Giải pt:
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
giải pt:
1) \(4\sqrt{\frac{x^2}{3}+4}=1+\frac{3x}{2}+\sqrt{6x}\)
2) \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
3) \(\sqrt{1+x}+\sqrt{1-x}+\frac{x^2}{4}=2\)
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)
Giải PT
a) 3cos26x + 8sin 3x cos 3x - 4 =0
b) sinx + 4cos2x + 1 = 0
c) \(\frac{1}{cos^2x}\)+ tanx - 1 = 0
d) sin x + 3sin\(\frac{x}{2}\)= 0
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải phương trình sau:\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\) 0
À,CHỈ CÓ 1 SỐ "0" THÔI NHÉ!
\(=>\frac{8}{2x^2-6x+2}-\frac{3}{2x^2-6x+2}=-1\)
\(=>\frac{5}{2x^2-6x+2}=-1\)
\(=>2x^2-6x+2=-5\)
\(=>2x^2-6x=-7\)
\(=>x.\left(2x-6\right)=-7\)
\(=>2x-6=-\frac{7}{x}\)
\(=>2x=\frac{-7+6x}{x}\)
\(=>3x=-7+6x\)
\(=>-7=-3x\)
\(=>x=\frac{-7}{-3}=\frac{7}{3}\)
E ms lớp 7 nên giải hơi dài thông cảm ạ :>
Huh?Sao cái \(\frac{4}{x^2-3x+2}\)nhân cả tử và mẫu với 2 thành ra \(\frac{8}{2x^2-6x+2}\)zậy?Tui tưởng là bằng \(\frac{8}{2x^2-6x+4}\)chứ?
Giải pt:
a/ \(\frac{7}{\sqrt{7x+4}+2}+\frac{7}{\sqrt{x+1}+1}+2x-8=0\)
b/ \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
pt quá vĩ đại =.= cx trên OLM lun
\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx
cái này ra nghiệm là
\(2-\sqrt{2}\)và\(\sqrt{2}+2\)
Giải các pt sau:
a) (x-1)2-(x-1)(x+1)=3x-5
e) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1_{ }\right)}{7}-5\)
c) x3 -6x2+9x=0
a) ( x - 1 )2 - ( x - 1 ).( x + 1 ) = 3x - 5
\(\Leftrightarrow\) ( x - 1 ).( x - 1 ) - ( x - 1 ) .( x + 1 ) = 3x - 5
\(\Leftrightarrow\)( x - 1 ) .( x - 1 - x - 1 ) - 3x + 5 = 0
\(\Leftrightarrow\) ( x - 1 ) .( -2 ) - 3x + 5 = 0
\(\Leftrightarrow\) - 2x + 2 - 3x + 5 = 0
\(\Leftrightarrow\)- 5x + 7 = 0
\(\Leftrightarrow\) - 5x = - 7
\(\Leftrightarrow\) x = \(\frac{7}{5}\)
Vậy phương trình có nghiệm là : x = \(\frac{7}{5}\)
c) x3 - 6x2 + 9x = 0
\(\Leftrightarrow\)x.( x2 - 6x + 9 ) = 0
\(\Leftrightarrow\) x.( x - 3 )2 = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy phương trình có nghiệm là : x = 0 , x = 3
giải các pt
a) \(3cos4x-8cos^6x+2cos^2x+3=0\)
b) \(4+3sinx+sin^3x=3cos^2x+cos^6x\)
c) \(2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=cos2x-3\)
d) \(\frac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\frac{x}{2}\right)\)
a/
\(\Leftrightarrow3\left(cos4x+1\right)+2cos^2x\left(1-4cos^4x\right)=0\)
\(\Leftrightarrow3\left(2cos^22x-1+1\right)+2cos^2x\left(1-2cos^2x\right)\left(1+2cos^2x\right)=0\)
\(\Leftrightarrow6cos^22x+\left(1+cos2x\right).\left(-cos2x\right)\left(2+cos2x\right)=0\)
Đặt \(cos2x=a\)
\(\Rightarrow6a^2-a\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow a\left(-a^2+3a-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow4+3sinx+sin^3x=3\left(1-sin^2x\right)+\left(1-sin^2x\right)^3\)
Đặt \(sinx=a\) ta được:
\(a^3+3a+4=3-3a^2+\left(1-a\right)^3\)
\(\Leftrightarrow a^3+3a^2+3a+1=\left(1-a\right)^3\)
\(\Leftrightarrow\left(a+1\right)^3=\left(1-a\right)^3\)
\(\Leftrightarrow a+1=1-a\)
\(\Leftrightarrow a=0\)
\(\Rightarrow sinx=0\Rightarrow x=k\pi\)
c/
ĐKXĐ: ...
\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)
\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)
\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)
\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)
\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pi+k2\pi\)
giải pt:
a, 6x4-8x2+3=0
b,(x2-3x+3)(x2-2x+3)=2x2
c,(x2-5x+1)(x2-4)=6(x-1)2
d,x2+\(\frac{4x^2}{\left(x+2\right)^2}\)=12
e, \(\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\left(\frac{x^2-4}{x^2-1}\right)=0\)
f, \(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
g, \(\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
a) x vô nghiệm
b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)
=>(x-3)(x-1)(x2-x+3)=0
TH1:x-3=0
=>X=3
TH2:x-1=0
=>x=1
TH3:x2-x+3=0
<=>(-1)2-4(1.3)=-11
vì -11<0
=>x=1 hoặc 3
bạn tự tiếp làm đi dễ mà