Những câu hỏi liên quan
NH
Xem chi tiết
LC
Xem chi tiết
TN
Xem chi tiết
DL
Xem chi tiết
LC
19 tháng 6 2019 lúc 10:34

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}\)

\(=\frac{-5}{7}\)

Bình luận (0)
H24
19 tháng 6 2019 lúc 10:41

#)Giải :

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\frac{\left(\frac{-5}{7}\right)^n\times\left(\frac{-5}{7}\right)}{\left(\frac{-5}{7}\right)^n}=\frac{-5}{7}\)

Bình luận (0)
H24
19 tháng 6 2019 lúc 10:42

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\left(\frac{-5}{7}\right)^{n+1-n}=\left(\frac{-5}{7}\right)^1=\frac{-5}{7}\)

Bình luận (0)
NN
Xem chi tiết
NT
4 tháng 2 2022 lúc 13:47

a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)

b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)

Bình luận (0)
QL
Xem chi tiết
HN
Xem chi tiết
HN
28 tháng 11 2019 lúc 10:43

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
28 tháng 11 2019 lúc 11:21

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
28 tháng 11 2019 lúc 12:01

Bạn Nhật sai đề bài

Câu. a. Dòng thứ nhất xuống dòng thứ 2. Em chú ý mẫu số sai rồi.

b. Công thức có số 2 trên tử số. Mà em ko đưa số 2 vào thì sao áp dụng dc công thức?

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NN
27 tháng 3 2017 lúc 18:40

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

Bình luận (0)
VP
28 tháng 3 2017 lúc 14:56

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

Bình luận (0)
HC
Xem chi tiết