Những câu hỏi liên quan
NA
Xem chi tiết
NT
Xem chi tiết
NT
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Bình luận (0)
DH
Xem chi tiết
NL
12 tháng 8 2021 lúc 22:16

\(y^2=a^2\left(1+b^2\right)+b^2\left(1+a^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(x^2=a^2b^2+\left(1+a^2\right)\left(1+b^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}+1\)

\(\Rightarrow y^2+1=x^2\)

\(\Rightarrow y^2=x^2-1\)

\(\Rightarrow y=\sqrt{x^2-1}\)

Bình luận (0)
LA
Xem chi tiết
AH
23 tháng 7 2021 lúc 23:58

Lời giải:
\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)

\(\Rightarrow (\sqrt{a}+\sqrt{b}+\sqrt{c})^2=4\)

\(\Leftrightarrow a+b+c+2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=4\)

\(\Leftrightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\frac{4-(a+b+c)}{2}=1\)

\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})\)

Tương tự:

$b+1=(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})$
$c+1=(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})$

Khi đó:

\(A=\left[\frac{\sqrt{a}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})}+\frac{\sqrt{b}}{(\sqrt{b}+\sqrt{a})(\sqrt{b}+\sqrt{c})}+\frac{\sqrt{c}}{(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})}\right]\sqrt{(a+1)(b+1)(c+1)}\)

\(\frac{\sqrt{a}(\sqrt{b}+\sqrt{c})+\sqrt{b}(\sqrt{c}+\sqrt{a})+\sqrt{c}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.\sqrt{(\sqrt{a}+\sqrt{b})^2(\sqrt{b}+\sqrt{c})^2(\sqrt{c}+\sqrt{a})^2}\)

\(=\frac{2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})\)

\(=2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=2\)

 

Bình luận (0)
TC
Xem chi tiết
NL
Xem chi tiết
ML
19 tháng 8 2016 lúc 18:01

\(gt\Rightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{a^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}=\sqrt{\frac{\left(1+\frac{1}{a^2}\right)\left(1+\frac{1}{b^2}\right)}{c^2\left(1+\frac{1}{c^2}\right)}}\)

\(=\frac{1}{c}.\sqrt{\frac{\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{c}\right)}{\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{b}\right)}}=\frac{1}{c}\sqrt{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{bc}+\frac{1}{ca}\)

Tương tự với các cụm còn lại, ta được

\(A=2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\)

Bình luận (0)
CY
19 tháng 8 2016 lúc 12:48

bài này khó thật, nhưng bạn đừng buồn, sẽ có nhiều bạn khác giúp bạn

nha Nguyễn Quang Linh à

Bình luận (0)
PD
19 tháng 8 2016 lúc 13:00

chắc =1 đó

Bình luận (0)
H24
Xem chi tiết
DA
11 tháng 12 2017 lúc 13:36

Từ ab + bc + ac =1

=> ab + bc + ac + a2 = 1 + a2

=> 1 + a2 = (a+b)(a+c) (1)

Tương tự: 1 + b2 = (a+b)(b+c) (2)

1 + c2 = (a+c)(b+c) (3)

Thay (1) (2) (3) vào P

P= a\(\sqrt{\left(b+c\right)^2}\)+ b\(\sqrt{\left(a+c\right)^2}\)+ c\(\sqrt{\left(a+b\right)^2}\)

= a|b+c| + b|a+c| + c|a+b|

= a(b+c) + b(a+c) + c(a+b) (do a,b,c >0)

= ab + ac +ab + bc +ac +bc

= 2(ab + ac + bc)

=2

Bình luận (0)
TB
Xem chi tiết
BT
18 tháng 7 2017 lúc 11:44

ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn

Bình luận (0)
NT
Xem chi tiết
DH
26 tháng 9 2017 lúc 14:09

Do ab + bc + ca = 1 nên ta có : 

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)

\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)

Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\)  (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)

Cộng vế với vế của (1) ; (2) ; (3) lại ta được :

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)

Bình luận (0)
TH
26 tháng 9 2017 lúc 13:58

khó thế bạn

Bình luận (0)