Tìm stn n sao cho 3n+1 và 2n+1 là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số tự nhiên n sao cho 2n+1 và 3n+1 là số chính phương và 2n+9 là số nguyên tố.
Mong giúp đỡ
tìm hai số tự nhiên n có 2 chữ số , biết 2n + 1 và 3n + 1 đều là các số chính phương:(giải chi tiết giùm mìh nhé đag cần gấp)
Tìm n là số có hai chữ số thỏa n+1 và 2n+1 là số chính phương
Dạng này khá đơn giản,bạn tìm ước là ra
cho n là số nguyên dương. chung minh nếu 2n+1 và 3n+1 là cac số chính phương thì 5n+3 không phải là số nguyen tố
bao minh bai nay: n-1 chia het cho n+3
1.CMR với mọi số tự nhiên n thì 3^n+4 không là số chính phương.
2.Tìm n thuộc N để n^2+2n +2 là số chính phương
Giải giúp mình.Càng nhanh càng tốt nha.
1, Tìm n thuộc N sao cho: 1!+2!+3!+...+n! là số chính phương
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
bài 1: tìm số tự nhiên n biết rằng:
a.1+2+3+...+n=378
b. chứng minh:A=4+2^2+2^3+...+2^2015 là 1 số chính phương
c. tìm A thuộc N biết ƯCLN (a,b)=10 ; BCNN (a,b)=120
d. Tìm n thuộc Z sao cho n-7 chia hết cho 2n+3
Bạn ơi, cái câu b đấy
Minh tính đc A=22016-1.
22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha
Giúp mình câu này với
1. tìm số nguyên n sao cho
a. n+7 phần 3n-1 là số nguyên
b. 3n+2 phần 4n-5 là stn
2.cho A=2n+1 phần n-3 + 3n-5 phần n-4 - 4n-5 phần n-3
tìm số nguyên n để A có giá trị nguyên
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
Chứng minh rằng:
a, Nếu n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương.
b, Nếu 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.
c, Nếu n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương.
d, Nếu mỗi số m và n là tổng của hai số chính phương thì tích của mn cũng là tổng của hai số chính phương.