tìm gtnn cua bieu thuc A=(x-y)^4+(y-z)^4+(z-x)^4 với 1<=x,y,z<=2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z > 0. Tim GTNN cua bieu thuc: P=x/y+z + y/z+x + z/x+y
Cho x,y,z > 0. Tim GTNN cua bieu thuc: P=x/y+z + y/z+x + z/x+y
tinh gia tri cua bieu thuc :N=xy^2.z^3+x^2.y^3.z^4+...........+x^2014.y^2015.z^2016 tai x=-1;y=-1;z=-1
Các bsnj giups mình với
Cho x,y,z la cac so thuc duong thoa man x + y + z = 6
Tim GTNN cua bieu thuc P = ( x + y )/(xyz)
\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)
Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)
Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )
=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)
=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)
Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)
=> P ≥ 4/9
Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3
tinh gia tri cua bieu thuc N=xy2z3+ x2y3z4+x3y4z5+...+x2016y2015z2016
tai x=-1 ; y=-1 ; z=-1
Cho x,y,z khac o va x-y-z=0.Tinh gia tri cua bieu thuc A=(1-z/x)(1-x/y)(1+y/Z)
cho bieu thuc A= x^2/(x+Y)+y^/(y+z)+z^2/(x+z)
Với x,y,z>0 thỏa mãn căn(xy)+căn(yz)+căn(zx)=2
GTNN A
cho \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
tinh gia tri cua bieu thuc B=\(\frac{x+y-z}{x+2y-z}\)
xet cac so thuc duong x,y,z thoa man x2+y2+z2=xy+xz+10yz tim gtnn cua bieu thuc
P= 8xyz - 3x3/y2+z2