Chứng minh M= 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ....+ 1/3^99 < 1/2
các bn giúp mik với
Tính
1. S1 = 1+ ( - 2) + 3 + ( - 4) + … + ( -2020) + 2021
2. S2 = ( - 2) + 4 + ( - 6) + 8….+ ( - 2014) + 2016
S3 = 1^2 -2^2 + 3^2 - 4^2 + …. 99^2 – 100^2 +101^2
CÁC BẠN GIÚP MÌNH VỚI !
1: Ta có: \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2020\right)+2021\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(2019-2020\right)+2021\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+2021\)
\(=-1\cdot1010+2021\)
\(=-1010+2021=1011\)
2) Ta có: \(S_2=\left(-2\right)+4+\left(-6\right)+8+...+\left(-2014\right)+2016\)
\(=\left(-2+4\right)+\left(-6+8\right)+...+\left(-2014+2016\right)\)
\(=2+2+...+2\)
\(=2\cdot504=1008\)
Cho mình cảm ơn bạn NGUYỄN LÊ PHƯỚC THỊNH nhé
S= 1/3 - 2/3^2 + 3/3^3 - 4/3^4+...+ 99/3^99 - 100/3^100
chứng minh S<1/5
mọi người giải giúp mik vs ạ
tìm x,biết:
a)||2x-3|-x+1|=4x-1
b)||5-2x|+x-3|=4x+2các bn giúp mik vs,mik đang cần gấp
Chứng minh rằng : 1/1*3+1/2*4+1/3*5+1/4*6+...+1/97*99+1/98*100 < 3/4
Giúp mik vs nha
Tìm x bt:
a) x-1/99 + x-2/98 + x-3/97 + x-4/96 = 4
b) x+1/99 + x+2/98 + x+3/97 = 3
c) x-1/99 + x-2/49 + x-4/32 = 6
Giúp mik với! Th5 mik mới nộp nhưng mong các bn giúp mik!
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
Chứng minh 1/101+1/102+...+1/199+1/200>7/12
Cho M=1/3+2/32+3/33+...+99/399+100/3100. Chứng minh M<3/4
giúp nhanh hộ minh voi minh
cám ơn
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
Chứng minh rằng:
1/3 - 2/3^2 + 3/3^3 - 4/3^4+......+ 99/3^99 - 100/3^100 < 3/16
Các bạn giúp mình với, mình cảm ơn
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)