Những câu hỏi liên quan
KK
Xem chi tiết
KK
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
PG
23 tháng 4 2019 lúc 19:39

Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!

Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)

Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)

Bình luận (0)
BH
23 tháng 4 2019 lúc 19:46

đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG

Bình luận (0)
NN
16 tháng 7 2020 lúc 9:14

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

ta nhóm số dương một nhóm , số âm 1 nhóm , đặt dấu trừ để đổi dấu số âm

\(A=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

ta có công thức =>  a-b=(a+b)-(b+b)=(a+b)-2b

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1010}\right)\)

\(A=\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\)

suy ra A=B

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
23 tháng 2 2020 lúc 21:12

Bn lm đc chx

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KT
Xem chi tiết