3x-7=23
3x-1. 7 + 3x-1 . 2 = 9
P = 2+22+23+ ... +265 + 266 . Chứng minh P chia hết cho 7 ? Vì sao .
\(3^{x-1}.7+3^{x-1}.2=9\\ 3^{x-1}.\left(7+2\right)=9\\ 3^{x-1}.9=9\\ 3^{x-1}=\dfrac{9}{9}=1\\ Mà:3^0=1\\ Nên:x-1=0\\ Vậy:x=0+1=1\\ ---\\ P=2+2^2+2^3+...+2^{65}+2^{66}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\\ =2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{64}\left(1+2+2^2\right)\\ =2.7+2^4.7+...+2^{64}.7\\ =\left(2+2^4+....+2^{64}\right).7⋮7\left(đpcm\right)\)
+)
\(3^{x-1}.7+3^{x-1}.2=9\)
\(3^{x-1}.\left(7+2\right)=9\)
\(3^{x-1}.9=9\)
\(3^{x-1}=9:9\)
\(3^{x-1}=1\)
⇔\(3^{x-1}=3^0\)
⇒\(x-1=0\)
\(x=0+1\)
\(x=1\)
Vậy \(x=1\)
+)
\(2+2^2+2^3+...+2^{65}+2^{66}\)
Vì \(2+2^2+2^3=14\) mà \(14\)⋮\(7\)
⇒Ta nhóm 3 số với nhau
Ta có:
\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\)
\(\left(2+2^2+2^3\right)+2^3.\left(2+2^2+2^3\right)+...+2^{63}.\left(2+2^2+2^3\right)\)
\(14.1+14.2^3+...+14.2^{63}\)
\(14.\left(1+2^3+...+2^{63}\right)\)
Do \(14\)⋮\(7\) nên \(P=14.\left(2+2^3+...+2^{63}\right)\)⋮\(7\)
Xin tick
(3x - 7)3 = 23 . 32 + 53
\(\left(3x-7\right)^3=2^3.3^2+53\)
\(\left(3x-7\right)^3=8.9+53=125\)
\(\Leftrightarrow\left(3x-7\right)^3=125=5^3\)
\(\Leftrightarrow3x-7=5\)
\(\Leftrightarrow3x=5+7\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=12:3\)
\(\Leftrightarrow x=4\)
\(\Leftrightarrow\left(3x-7\right)^3=8.9+53=125=5^3\)
\(\Rightarrow3x-7=5\Leftrightarrow3x=12\Leftrightarrow x=4\)
b) Tìm số tự nhiên x, biết: ( 3x – 2 3 ) . 7 = 7 4
b) ( 3x – 2 3 ) . 7 = 7 4
3x – 8 = 7 4 : 7
3x – 8 = 7 3
3x – 8 = 343
3x = 343 + 8
3x = 351
x = 351 : 3 = 117
a) (x – 45).27 = 0
=> x - 45 = 0
=> x = 45
b) 23.(42- x) = 23
=> 42- x = 1
=> x = 41
c. 3x – 5=7
=> 3x = 12
=> x = 4
e. 15 – 5x=10
=> 5x = 5
=> x = 1
tìm GTLN
a, A= √(3x-5)+√(7-3x)
b, B= √(x-5)+√(23-x)
a) \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có ; \(A^2=\left(1.\sqrt{3x-5}+1.\sqrt{7-3x}\right)^2\le\left(1^2+1^2\right)\left(3x-5+7-3x\right)\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{5}{3}\le x\le\frac{7}{3}\\\sqrt{3x-5}=\sqrt{7-3x}\end{cases}\Leftrightarrow x=2}\)
Vậy Max A = 2 <=> x= 2
b) \(B=\sqrt{x-5}+\sqrt{23-x}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có ; \(B^2=\left(1.\sqrt{x-5}+1.\sqrt{23-x}\right)^2\le\left(1^2+1^2\right)\left(x-5+23-x\right)\)
\(\Rightarrow B^2\le36\Leftrightarrow B\le6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}5\le x\le23\\\sqrt{x-5}=\sqrt{23-x}\end{cases}\Leftrightarrow}x=14\)
Vậy Max B = 6 <=> x = 14
cho mình xin cái link đc k, sao mình không thấy được câu trả lời của bạn
LINK đây bạn nhé ^^
http://olm.vn/hoi-dap/question/631449.html
(3x+2).(x-1)+(x+3).(x-7)+2x+23=0
tìm x
\(\left(3x+2\right)\left(x-1\right)+\left(x+3\right)\left(x-7\right)+2x+23=0\\ \Leftrightarrow3x^2+2x-3x-2+x^2+3x-7x-21+2x+23=0\\ \Leftrightarrow3x^2-x^2+2x-3x+3x-7x+2x-2-21+23=0\\ \Leftrightarrow x^2-3x=0\\ \Leftrightarrow x.\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
<=> x=0 hoặc x=3
(3x+2)(x-1)+(x+3)(x-7)+2x+23=0
=>3x2+2x-3x-2+x2+3x-7x-21+2x=-23
=>(3x2+x2)+(2x-3x+3x-7x+2x) -(2+21)=-23
=>4x2-3x-23=-23
=>4x2-3x=-23+23=0
=>x(4x-3)=0
=>x=0 hoặc 4x-3=0
=>x=0 hoặc x=3/4.
3/5-2/7<2/3x+3/4<23/18
Tìm x,y,z biết: x-3/4=y/15 ; y/10=z+7/7 và 3x-5z+2y=23
Bài 22 :
a. - 12 . ( x - 5 ) + 7 . ( 3 - x ) = 5
b. 30 . ( x + 2 ) - 6 . ( x - 5 ) - 24x = 100
Bài 23 :
a. xy - 3x = - 19
b. 3x + 4y - xy = 16
Bài 22:
a: =>-12x+60+21-7x=5
=>-19x+81=5
=>-19x=-76
=>x=4
b: =>30x+60-6x+30-24x=100
=>90=100(loại)
Tìm x biết:
-27+5(x-7)=23-(71-3x)
-27 + 5( x-7 ) = 23 - (71-3x)
-27 + 5( x-7 ) = 23 - 71 + 3x
5(x-7) - 3x = 23 - 71 + 27
5x - 35 - 3x = -21
x( 5-3 ) - 35 = -21
x.2 - 35 = -21
x.2 = -21 + 35
x.2 = 14
x = 7
Vậy x = 7
-27+5(x-7)=23-(71-3x)
=>-27+5x-35=23-71+3x
=>-27-35-23+71=3x-5x
=>-14=-2x
=>-2x=-14
=>x=-14:(-2)
=>x=7
Vậy x=7
Dễ vậy ,tự làm đi bn