tìm x,y,z nguyên sao cho \(x^2+y^2+z^2+6< xy+3x+4z\)
tìm x,y,z nguyên sao cho x2+y2+z2+6<xy+3x+4z
1)x/2=y/3=z/-4 và 3x-2z=99
2)x/2=y/3=z/6 và 4y-3x=66
3)x/4=y/3 và 3y=5z và x-y-z=100
4)x/5=y/3=z/2 và 2x-3y=100
5)x/5=y/2 và xy=90
6)x/4=y/5 và xy=20
7)x/2=y=2/3 và 3x-2y+4z=16
8)x=y/6=z/3 và 2x-3y+4z=-24
a. tìm x thuộc z sao cho (x+1 ) thuộc ước (2 ngũ x+9)
b. tìm cặp số nguyên x, y : xy + y -3x = 5
a: \(\Leftrightarrow x+1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2;6;-8\right\}\)
Tìm số thực z,y,z thoả mãn
xy / 2y+4x = yz / 4z+6x = zx/ 6x+2z = x^2+y^2+z^2 / 2^2+4^2+6^2
1. x-1/3=y-2/4=z+5/6 và x+y-z=8
2. x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
3. x+1/3=y+2/-4=z-3/5 vad 3x+2y+4z=47
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$
3.
Có:
$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}$
Áp dụng TCDTSBN:
$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{9+(-8)+20}=\frac{3x+2y+4z-5}{21}=\frac{47-5}{21}=2$
Suy ra:
$x+1=3.2=6\Rightarrow x=5$
$y+2=(-4).2=-8\Rightarrow y=-10$
$z-3=5.2=10\Rightarrow z=13$
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm x,y,z : (3x-2y)^4 +(3y-4z)^2+ /xy+xz-zy-240/ = 0
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)
tìm x ; y ; z nguyên sao cho : x^2 + y^2 + z^2 -xy -3y - 2z + 4 = 0