Những câu hỏi liên quan
ND
Xem chi tiết
NN
27 tháng 3 2017 lúc 18:40

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

Bình luận (0)
VP
28 tháng 3 2017 lúc 14:56

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
DM
31 tháng 7 2015 lúc 13:46

A=1.2+2.3+...+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

Bình luận (0)
VP
Xem chi tiết
PT
17 tháng 4 2016 lúc 21:12

Ta gọi A=1.2+2.3+3.4+...+n.(n+1)

          3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)

               =[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]

               =n(n+1)(n+2)

=>         A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
NS
17 tháng 4 2016 lúc 20:55

nhác viết quá

Bình luận (0)
NS
17 tháng 4 2016 lúc 20:57

viết nãy giờ bị thằng em phá hoại mất công

Bình luận (0)
H24
Xem chi tiết
DM
31 tháng 7 2015 lúc 18:12

A=1.2+2.3+....+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

 

Bình luận (0)
PN
Xem chi tiết
PC
29 tháng 12 2017 lúc 20:04

Đặt \(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\)

\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
PN
29 tháng 12 2017 lúc 20:20

Bạn ơi tại sao 3n.(n+1) lại bằng với n.(n+1).(n+2-n+1)

Bình luận (0)
MH
Xem chi tiết
NM
10 tháng 10 2021 lúc 22:32

\(1,\)

\(a,\) Sửa: \(A=10^n+72n-1⋮81\)

Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)

Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)

Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)

\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)

Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)

Theo pp quy nạp 

\(\Rightarrow A⋮81\)

\(b,B=2002^n-138n-1⋮207\)

Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)

Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)

Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)

\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)

Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)

Nên theo pp quy nạp \(B⋮207,\forall n\)

Bình luận (0)
NM
10 tháng 10 2021 lúc 22:41

\(2,\)

\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)

Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)

Với \(n=k+1\)

Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Thật vậy, ta có:

\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Theo pp quy nạp ta có đpcm

\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)

Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)

Với \(n=k+1\)

Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy, ta có

\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo pp quy nạp ta được đpcm

Bình luận (0)
LA
Xem chi tiết
PA
Xem chi tiết
NH
7 tháng 7 2016 lúc 15:09

Đặt A=1.2+2.3+3.4+...+n(n+1)

=>3A=(3−0).1.2+(4−1).2.3+...+(n+2−n+1).n(n+1)

=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)

=>3A=n(n+1)(n+2)

=>A=n(n+1)(n+2):3(đpcm)

Bình luận (0)