Những câu hỏi liên quan
H24
Xem chi tiết
MP
26 tháng 8 2023 lúc 9:03

a) \(\lim\limits3=3\) vì \(3\) là hằng số.

Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).

b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 11:37

a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) =  - 2\)

b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}}  = 4\)

c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)

d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
MP
26 tháng 8 2023 lúc 9:08

a) \(\lim\limits\dfrac{2n^2+3n}{n^2+1}=\lim\limits\dfrac{n^2\left(2+\dfrac{3n}{n^2}\right)}{n^2\left(1+\dfrac{1}{n^2}\right)}=\lim\limits\dfrac{2+\dfrac{3}{n}}{1+\dfrac{1}{n^2}}=2\).

b) \(\lim\limits\dfrac{\sqrt{4n^2+3}}{n}\\ =\lim\limits\dfrac{\sqrt{n^2\left(4+\dfrac{3}{n^2}\right)}}{n}\\ =\lim\limits\dfrac{\sqrt[n]{4+\dfrac{3}{n^2}}}{n}\\ =\lim\limits\sqrt{4+\dfrac{3}{n^2}}\\ =2.\)

Bình luận (0)
MM
Xem chi tiết
NL
13 tháng 2 2022 lúc 21:55

\(\lim\dfrac{3+4^n}{1+3.4^{n+1}}=\lim\dfrac{3+4^n}{1+12.4^n}=\lim\dfrac{3\left(\dfrac{1}{4}\right)^n+1}{\left(\dfrac{1}{4}\right)^n+12}=\dfrac{0+1}{0+12}=\dfrac{1}{12}\)

\(\lim\dfrac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}=\lim\dfrac{\left(-2\right)^n+3^n}{-2\left(-2\right)^n+3.3^n}=\lim\dfrac{\left(-\dfrac{2}{3}\right)^n+1}{-2\left(-\dfrac{2}{3}\right)^n+3}=\dfrac{0+1}{0+3}=\dfrac{1}{3}\)

Bình luận (0)
DH
Xem chi tiết
NL
12 tháng 2 2022 lúc 21:09

\(\lim\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\lim\dfrac{n-1}{\left(2n+3\right)\left(\sqrt{n^2+n-1}+n\right)}\)

\(=\lim\dfrac{1-\dfrac{1}{n}}{\left(2+\dfrac{3}{n}\right)\left(\sqrt{n^2+n-1}+n\right)}=\dfrac{1}{2.+\infty}=0\)

Bình luận (0)
CG
Xem chi tiết
AM
12 tháng 2 2022 lúc 20:27

a. ĐKXĐ: \(n\ne\dfrac{-3}{2}\)\(\left[{}\begin{matrix}x< \dfrac{-1-\sqrt{5}}{2}\\x>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{n^2+n-1}-n}{2n+3}=\)\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{n}-\dfrac{1}{n^2}}-1}{2+\dfrac{3}{n}}=0\)

Bình luận (0)
MH
12 tháng 2 2022 lúc 20:24

\(b,lim\left(^3\sqrt{n^3+1}+\sqrt{n^2+n}-2n\right)\)

\(=limn\left(^3\sqrt{1+\dfrac{1}{n^3}}+\sqrt{1+\dfrac{1}{n}}-2\right)\)

\(=n\left(1+1-2\right)=0\)

Bình luận (0)
NL
12 tháng 2 2022 lúc 20:29

\(\lim\left(\sqrt[3]{n^3+1}-n+\sqrt[]{n^2+n}-n\right)=\lim\left(\dfrac{1}{\sqrt[3]{\left(n^3+1\right)^2}+n\sqrt[3]{n^3+1}+n^2}+\dfrac{n}{\sqrt[]{n^2+n}+n}\right)\)

\(=\lim\left(\dfrac{1}{\sqrt[3]{\left(n^3+1\right)^2}+n\sqrt[3]{n^3+1}+n^2}+\dfrac{1}{\sqrt[]{1+\dfrac{1}{n}}+1}\right)=0+\dfrac{1}{2}=\dfrac{1}{2}\)

Bình luận (0)
DH
Xem chi tiết
DL
11 tháng 2 2022 lúc 8:30

Câu a:

undefined

Bình luận (0)
NL
12 tháng 2 2022 lúc 21:01

\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 11:35

a) Đặt \({u_n} = 2 + {\left( {\frac{2}{3}} \right)^n} \Leftrightarrow {u_n} - 2 = {\left( {\frac{2}{3}} \right)^n}\).

Suy ra \(\lim \left( {{u_n} - 2} \right) = \lim {\left( {\frac{2}{3}} \right)^n} = 0\)

Theo định nghĩa, ta có \(\lim {u_n} = 2\). Vậy \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right) = 2\)

b) Đặt \({u_n} = \frac{{1 - 4n}}{n} = \frac{1}{n} - 4 \Leftrightarrow {u_n} - \left( { - 4} \right) = \frac{1}{n}\).

Suy ra \(\lim \left( {{u_n} - \left( { - 4} \right)} \right) = \lim \frac{1}{n} = 0\).

Theo định nghĩa, ta có \(\lim {u_n} =  - 4\). Vậy \(\lim \left( {\frac{{1 - 4n}}{n}} \right) =  - 4\)

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 15:50

a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)           

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)                   

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)              

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)                       

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)

Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} =  + \infty  \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)

Bình luận (0)