tính tổng
s=1-3+3^2-3^3+...+3^99-3^100
Tính tổngS=3+3/2+3/2^2+...+3/2^9
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
Cho mik hỏi cách làm bài này
Tính nhanh 1 1/2x1 1/3 × 11/4×...x 1 1/99×1 1/100
tính 1/3 - 2/3^2 + 3/3^3 - 4/3^4..... + 99/3^99 - 100/3^100
Cho tổng S=1+3+3^2+3^3+3^4+...+3^2016.
CMR TổngS chia hết cho 13
\(S=1+3+3^2+3^3+3^4+.....+3^{16}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+......+3^{2014}\left(1+3+3^2\right)\)
\(=1.13+3^3.13+.....+3^{2014}.13\)
\(=13\left(1+3^3+....+3^{2014}\right)⋮13\)
\(\Rightarrow S⋮13\)
Tính tổng
A=\(1^3+2^3+3^3+...+100^3\)
B=\(2^3+4^3+...+98^3\)
C=\(1^3+3^3+5^3+...+99^3\)
D=\(1^3-2^3+3^3-4^3+...+99^3-100^3\)
a) Ta có: \(A=1^3+2^3+3^3+...+100^3\)
\(=\left(1-1\right)\cdot1\cdot\left(1+1\right)+1+\left(2-1\right)\cdot2\cdot\left(2+1\right)+2+...+\left(100-1\right)\cdot100\cdot\left(100+1\right)+100\)
\(=1+2+1\cdot2\cdot3+...+99\cdot100\cdot101\)
\(=5050+25497450\)
\(=25502500\)
tính 1/3 - 2/3^2 + 3/3^3 - 4/3^4..... + 99/3^99 - 100/3^100 . Giúp nhanh với ạ.
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
Tính
A=1*2+2*3+3*4+..+99*100
B=1*3+3*5+5*7+..+97*99
C=1*2*3+2*3*4+...+98*99*100
A= 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 98.99.100
A = 970200 : 3
A = 32340.
tính nhanh (1+2+3+...+99+100).(1/2-1/3-1/7-1/9)(63.1,2-21.3,6)/1-2+3-4+...+99-100
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
Tính tổng:
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)100
\(B=1-2+2^2-2^3+2^4-...-2^{99}+2^{100}\)
\(A=1+3+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)