A=1+3+3^2+3^3+3^4+....+3^100
Tìm số dư trong phép chia A chia 13
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tổng A=2^0 + 2^1 +2^2 +2^3+2^4+2^5 +....+2^100
Tìm số dư của phép chia tổng A cho 3
cho tổng A=2^0+2^1+2^3+2^4+2^5+...+2^100
tìm số dư của phép chia tổng Acho3
A=2 mũ 0 +2 mũ 1+2 mũ 2+ 2mũ 3 + 2 mũ 4+2 mũ 5 +...+ 2 mũ 100
Tìm số dư của phép chia tổng A cho 3
Cứu tui với
\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)
Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)
\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1
hay số dư của phép chia \(A\) cho \(3\) là \(1\).
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1
cho A=1+3+3^2+3^3+.....+3^28+3^29
a chung minh rang a chia het cho 4 ; 13
b tìm số dư trong phép chia A cho 40
Bài 1
a) Tìm số dư trong phép chia 4.10mux100+1 khi chia cho 3
b) Tìm số dư trong phép chia 1+2+3+4+...+99+100 khi chia cho 9
c) Tìm số dư của phép chia 1+3+5+7+...+17+19 khi chia cho 2
Cho A = 2+3+32 + 33 + 34+........+354
Tìm số dư của A trong phép chia cho 13
Ta có : A=(2+3)+(32+33+34)+.......+(352+353+354)
A=5+32.(1+3+32)+......+352.(1+3+32)
A=5+32.13+......+352.13
A=5+13.(32+.....+352)
A=13.(32+...+352)+5
=> A chia 13 có dư r =5
NHỚ K CHO MÌNH NHA CHÚC BẠN HỌC GIỎI
Cho B=3+3^2+3^3+3^4+......+3^100 . Tìm số dư trong phép chia B cho 13
Số số hạng của B:
\(100-1+1=100\) (số)
Do 100 chia 3 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 3 số hạng, dư 1 số hạng như sau:
\(B=3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2.\left(1+3+3^2\right)+3^5.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=3+3^2.13+3^5.13+...+3^{98}.13\)
\(=3+13.\left(3^2+3^5+...+3^{98}\right)\)
Do \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(\Rightarrow B=3+13.\left(3^2+3^5+...+3^{98}\right)\) chia 13 dư 3
Vậy số dư trong phép chia B cho 13 là 3
B = 3 + 32 + 33 + 34 + ... + 3100
Xét dãy số: 1;2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100
vì 100 : 3 = 33 dư 1 nên nhóm 3 số hạng liên tiếp của B thành một nhóm khi đó
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.(32 + 3 + 1) + 3
B = 398.13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì 13 ⋮ 13; B : 13 dư 3.
A) Trong phép chia cho, số dư có thể bằng 0 hoặc 1. Trong mỗi phép chia cho 3, cho 4, cho 5, số dư có thể bằng bao nhiêu?
b) Dạng tổng quát của số chia hết cho 2k, dạng tổng quất của số chia hết cho 3, số chia cho 3 dư 1, số chia cho 3 dư 2.
1,tìm số dư của 1994^2005:7
2,cmr :6^1001-1 và 6^1001+1 đều chia hết cho7
3,tìm số dư trong phép chia 1532^5-1:9
4,tìm số dư trong phép chia 3^2003:13
5,tìm số dư trong phép chia 7.5^2n+12.6^n:19 (n thuộc N)
Giải bằng phép đồng dư