Những câu hỏi liên quan
H24
Xem chi tiết
RK
28 tháng 8 2021 lúc 18:15

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

Bình luận (0)
NT
28 tháng 8 2021 lúc 21:20

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 8 2021 lúc 21:05

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
NM
24 tháng 1 2018 lúc 21:57

tôi chịu

Bình luận (0)
KT
24 tháng 1 2018 lúc 22:04

b)  Đặt  \(x-7=a\) ta có:

         \(\left(a+1\right)^4+\left(a-1\right)^4=16\)

 \(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)

 \(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)

 \(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)

 \(\Leftrightarrow\)\(a^4+6a^2-7=0\)

 \(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

Vì     \(a^2+7>0\) nên    \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)

Thay trở lại ta có:   \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Vậy...

Bình luận (0)
H24
24 tháng 1 2018 lúc 22:33

b) \(\left(x-6\right)^4+\left(x-8\right)^4=16\)

Ta có: \(\left(x-6\right)^4+\left(x-8\right)^4=16\)(1)

Đặt t = x - 7, từ (1) suy ra:

\(\Leftrightarrow\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^3-4t^3+6t^2-4t+1\right)\)

\(\Leftrightarrow2t^4+12t^2+2=16\)

\(\Leftrightarrow t^4+6t^2+1=8\)

\(\Leftrightarrow t^4+6t^2-7=0\)

\(\Leftrightarrow\left(t^4-1\right)+\left(6t^2-6\right)=0\)

\(\Leftrightarrow\left(t^2+1\right)\left(t^2-1\right)+6.\left(t^2-1\right)=0\)

\(\Leftrightarrow\left(t^2-1\right)\left(t^2+1+6\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)\left(t^2+7\right)=0\)

Vì: \(t^2+7\ge7\)nên:

\(\left(t-1\right)\left(t+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)

\(\Rightarrow x\in\left\{6;8\right\}\)

Bình luận (0)
HT
Xem chi tiết
LH
Xem chi tiết
TM
15 tháng 3 2023 lúc 14:32

Bình luận (1)
NN
Xem chi tiết
TH
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Bình luận (0)
TH
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Bình luận (0)
KT
Xem chi tiết
NT
16 tháng 9 2023 lúc 20:29

=>4x+4y+y=6 và 3x+3y+y=8

=>4x+5y=6 và 3x+4y=8

=>12x+15y=18 và 12x+16y=32

=>-y=-14 và 4x+5y=6

=>y=14 và 4x=6-5y=6-70=-64

=>x=-16 và y=14

Bình luận (0)
NP
Xem chi tiết
TP
12 tháng 4 2019 lúc 6:00

Đặt \(x+7=a\)

\(pt\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4=272\)

\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=272\)

\(\Leftrightarrow2a^4+12a^2+2=272\)

\(\Leftrightarrow2a^4+12a^2-270=0\)

\(\Leftrightarrow2\left(a^4+6a^2-135\right)=0\)

\(\Leftrightarrow a^4-3a^3+3a^3-9a^2+15a^2-45a+45a-135=0\)

\(\Leftrightarrow a^3\left(a-3\right)+3a^2\left(a-3\right)+15a\left(a-3\right)+45\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a^3+3a^2+15a+45\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left[a^2\left(a+3\right)+15\left(a+3\right)\right]=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)\left(a^2+15\right)=0\)

Vì \(a^2+15>0\forall x\)

\(pt\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

Thay \(a=x+7\)ta có pt :

\(\left(x+7-3\right)\left(x+7+3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-10\end{cases}}\)

Vậy....

Bình luận (0)
QL
Xem chi tiết
HM
13 tháng 9 2023 lúc 0:01

a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\) 

\(8 - x + 15 = 6 - 4x\)

\( - x + 4x = 6 - 8 - 15\)

\(3x =  - 17\)

\(x = \left( { - 17} \right):3\)

\(x = \dfrac{{ - 17}}{3}\)

Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).

b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)

\( - 9 + 12u =  - 45 + 6u\)

\(12u - 6u =  - 45 + 9\)

\(u = \left( { - 36} \right):6\)

\(6u =  - 36\)

\(u =  - 6\)

Vậy nghiệm của phương trình là \(u =  - 6\).

c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)

\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)

\({x^2} + 6x + 9 - {x^2} - 4x = 13\)

\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)

\(2x = 4\)

\(x = 4:2\)

\(x = 2\)

Vậy nghiệm của phương trình là \(x = 2\).

d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)

\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)

\({y^2} - 25 - {y^2} + 4y - 4 = 5\)

\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)

\(4y = 34\)

\(y = 34:4\)

\(y = \dfrac{{17}}{2}\)

Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).

Bình luận (0)