Thực hiện phép tính:
1-2+3-4+...+2017-2018
Thực hiện phép tính :
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
thục hiện phép tính: (1/2+1/3+1/4+.....+1/2017+1/2018)/(2017/1+2016/2+2015/3+.....+2/2016+1/2017)
Các bạn giúp mình nha ! Thank you very much :)
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
Thực hiện phép tính
a,\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(2018\cdot\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019\cdot\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-4038-\frac{2019}{2017}+4038\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
không thực hiện phép tính hãy so sánh A= 2017 . 2018 - 2000 và B= 2017^2 + 17
các cao nhân giúp em vói ạ
Thực hiện phép tính
1+3+5+…+2019−2−4−6−…−2018.
\(=\left(1+3+5+...+2019\right)-\left(2+4+...+2018\right)\\ =\dfrac{\left(2019+1\right)\left[\left(2019-1\right):2+1\right]}{2}-\dfrac{\left(2018+2\right)\left[\left(2018-2\right):2+1\right]}{2}\\ =\dfrac{1020100}{2}-\dfrac{1019090}{2}=505\)
thực hiện phép tính
A=47*63+47*17+80*53
B=(5*8+2*3-23*2)*(6^2016+7^2017+8^2018)
thực hiện phép tính
(32016 x 11 + 32018 x 50 ) : ( 32017 x 42 )
\(\left(3^{2016}\cdot11+3^{1018}\cdot50\right):\left(3^{2017}\cdot4^2\right)\)
\(=\left(3^{2016}\cdot11+3^{2016}\cdot3^2\cdot50\right):\left(3^{2017}\cdot4^2\right)\)
\(=\left(3^{2016}\cdot11+3^{2016}\cdot450\right):\left(3^{2017}\cdot16\right)\)
\(=\left[3^{2016}\cdot\left(11+450\right)\right]:\left(3^{2017}\cdot16\right)\)
\(=\left[3^{2016}\cdot461\right]:\left(3^{2017}\cdot16\right)\)
\(=\frac{3^{2016}\cdot461}{3^{2017}\cdot16}\)
\(=\frac{3^{2016}\cdot461}{3\cdot3^{2016}\cdot16}\)
\(=\frac{461}{3\cdot16}=\frac{461}{48}\)
không thực hiện phép tính hãy so sánh
A= 2017^2
B = 2016× 2018
Ta có :
A=2017.2017=(2016+1)2017
A=2017.2016+2017
Ta lại có :
B=2016.2018=2016(2017+1)
B=2016.2017+2016
Mà 2017>2016
\(\Rightarrow\)2017.2016+2017>2017.2016+2016
\(\Rightarrow\)A>B
B = 2016 x 2018
= (2017-1)(2017+1)
= 2017x2017 + 2017 - 2017 - 1
= 2017x2017 -1
Vậy A > B
thực hiện phép tính.
a) b) C= 3+31+32+33+...+3100 c)\(\dfrac{2018.2019-1}{2018^2+2017}\)
\(\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
Sửa đề: \(C=1+3^1+3^2+...+3^{100}\)
b) Ta có: \(C=1+3^1+3^2+...+3^{100}\)
\(\Leftrightarrow3\cdot C=3+3^2+...+3^{101}\)
\(\Leftrightarrow C-3\cdot C=1+3+3^2+...+3^{100}-3-3^2-...-3^{100}-3^{101}\)
\(\Leftrightarrow-2\cdot C=1-3^{101}\)
hay \(C=\dfrac{3^{101}-1}{2}\)
b) Ta có: C=1+31+32+...+3100C=1+31+32+...+3100
⇔3⋅C=3+32+...+3101⇔3⋅C=3+32+...+3101
⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101
⇔−2⋅C=1−3101