không sử dụng máy tính. Hãy tính.
\(A=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}:2\sqrt{2}\)
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
So sánh ( Không sử dụng máy tính)
a) \(\sqrt{2}+\sqrt{3}\) và 3
b) 5 - và\(3\sqrt{2}-2\)
c) 3+ và \(2\sqrt{2}+6\)
Thực hiện phép tính không sử dụng máy tính cầm tay
A=\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)
B= \(\sqrt{27}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}+3}{\sqrt{3}}\)
C= \(\sqrt{5-2\sqrt{6}+}+\sqrt{5+\sqrt{24}}\)
D= \(\left(\sqrt{3}+4\right).\sqrt{19-8\sqrt{3}}\)
Không sử dụng máy tính cầm tay, hãy so sánh các số sau:
a) \(\sqrt {42} \) và \(\sqrt[3]{{51}}\)
b) \({16^{\sqrt 3 }}\) và \({4^{3\sqrt 2 }}\)
c) \({(0,2)^{\sqrt {16} }}\) và \({\left( {0,2} \right)^{\sqrt[3]{{60}}}}\)
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)
Không sử dụng máy tính cầm tay, tính A=\(\dfrac{1}{1+\sqrt{2}} + \dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).
Lời giải:
$A=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{100}-\sqrt{99}}{(\sqrt{99}+\sqrt{100})(\sqrt{100}-\sqrt{99})}$
$=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+....+\frac{\sqrt{100}-\sqrt{99}}{1}$
$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}$
$=\sqrt{100}-1=10-1=9$
Không sử dụng máy tính bỏ túi, tính giá trị biểu thức sau: \(A=\frac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
a/ Không sử dụng máy tính .Cho góc nhọn α , biết sinα = \(\dfrac{\sqrt{3}}{2}\) . Hãy tính cosα ; tanα ; cotα.
b/ Không sử dụng máy tính .Cho góc nhọn α , biết cosα = \(\dfrac{\sqrt{5}}{7}\) . Hãy tính cosα ; tanα ; cotα.
a: \(\cos\alpha=\dfrac{1}{2}\)
\(\tan\alpha=\sqrt{3}\)
\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)
Không sử dụng máy tính hãy so sánh:
A=\(\frac{19-5\sqrt{3}}{3}\)và B=2\(\sqrt{2}\)
Giả sử A > B
<=> 19 >\(5\sqrt{3}+6\sqrt{2}\)
<=> (6 + 3 - \(2\sqrt{3}\sqrt{6}\)
) + (10 - 5\(\sqrt{3}\))>0
<=> (\(\sqrt{6}-\sqrt{3}\))2 + (10 - \(5\sqrt{3}\))>0
Mà 10 - 5\(\sqrt{3}\)> 10 - 5\(\sqrt{4}\) = 0
Vậy A > B
So sánh:(Không sử dụng máy tính )
a)\(\frac{1}{3}\sqrt{51}\)và \(\frac{1}{5}\sqrt{150}\)
b)\(\frac{1}{2}\sqrt{6}\)và \(6\sqrt{\frac{1}{2}}\)
a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)
b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)
a) Vì \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)
\(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)
\(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)
b) Vì \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)
\(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)
\(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)