Những câu hỏi liên quan
H24
Xem chi tiết
H24
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Bình luận (0)
NM
Xem chi tiết
PQ
25 tháng 3 2018 lúc 20:17

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 7 2023 lúc 13:43

Chọn C

Bình luận (0)
QL
22 tháng 9 2023 lúc 11:26

Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).

Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).

Chọn C.

Bình luận (0)
KS
Xem chi tiết
TA
Xem chi tiết
LD
30 tháng 3 2017 lúc 22:35

Khó dữ vậy!!!!

Bình luận (0)
TL
6 tháng 5 2017 lúc 14:49

Đợi tí , mạng chậm

Bình luận (0)
TL
6 tháng 5 2017 lúc 21:54

Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(6A-2A< 3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)

Bình luận (0)
TV
Xem chi tiết
NH
26 tháng 9 2024 lúc 19:27

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

Bình luận (0)
P2
Xem chi tiết
NV
Xem chi tiết
ML
28 tháng 1 2020 lúc 17:10

b)

program hotrotinhoc;

var s: real;

i,n: byte;

function t(x: byte): longint;

var j: byte;

t1: longint;

begin

t1:=1;

for j:=1 to x do

t1:=t1*j;

t1:=t;

end;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+1/t(i);

write(s:1:2);

readln

end.

c) Đề em ghi sai rồi thế này với đúng :

\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)

program hotrotinhoc;

var t: real;

n,i: byte;

begin

readln(n);

t:=0;

for i:=1 to n do

t:=t+i/(i*i);

write(t:1:2);

readln

end.

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 1 2020 lúc 11:05

a)

uses crt;

var N,S,i : integer;

begin clrscr;

S:=1;

for i:= 1 to N do S:=S*i;

writeln('N!=',S);

readln

end.

Các cái kia tương tự :))

Bình luận (0)
 Khách vãng lai đã xóa
ML
28 tháng 1 2020 lúc 17:20

d)

program hotrotinhoc;

var i,n: byte;

s: real;

function mu(x: byte): longint;

var j : byte;

k: longint;

begin

k:=1;

for j:=1 to x do

k:=k*x;

k:=mu;

end;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+1/mu(i);

write(s:1:2);

readln

end.

e)

program hotrotinhoc;

var s: real;

i,n: byte;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+i/(i+1);

write(s:1:2);

readln

end.

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
TN
21 tháng 8 2015 lúc 18:06

\(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)

\(3A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)

\(3A-A=\frac{1}{3}-\frac{1}{3^9}\)

\(2A=\frac{1}{3}.\left(1-\frac{1}{3^8}\right)\)

\(A=\frac{1}{6}.\left(1-\frac{1}{3^8}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)

\(\frac{1}{2}B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}\)

\(B-\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)

\(\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)

\(B=2-\frac{2}{2^n.2}=2-\frac{1}{2^n}\)

Bình luận (0)
DP
Xem chi tiết