GIẢI PHƯƠNG TRÌNH
\(\frac{x-1001}{1002}+\frac{x-1950}{53}=\frac{x+158}{2161}+\frac{x+193}{2196}\)
Giải phương trình sau
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\Rightarrow\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\Rightarrow\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
\(\Rightarrow\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
\(\Rightarrow x-100=0\).Do \(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\ne0\)
\(\Rightarrow x=100\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}-1-\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
\(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
(x-100)(\(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}=0\)
-> x-100 = 0 -> x = 100
mà \(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\) khác 0
Vậy x = 100
giải phương trình sau:
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)7
giải phương trình sau 
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
dễ thôi mà
Áp dụng tỉ lệ thức, ta có:
\(\Leftrightarrow\frac{108x-4970}{2915}=\frac{92x-4970}{2115}\Rightarrow\left(108x-4970\right)2115=2915\left(92x-4970\right)\)
=>x=100
Ông Thắng: làm kiểu đó chưa gọi là đúng hoàn toàn đâu
$\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}$x−4555 +x−4753 =x−5545 +x−5347
=> x = 100
tìm x biết
\(\frac{x-2}{1002}+\frac{x-4}{1001}+\frac{x-6}{1000}=\frac{x-8}{999}+\frac{x-10}{998}+\frac{x-12}{997}\)
giải phương trình
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\Rightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\frac{51-x}{49}+1\)\(=-5+5\)
\(\Rightarrow\frac{59-x+49}{41}+\frac{57-x+43}{43}+\frac{55-x+45}{45}+\frac{53-x+47}{47}\)\(+\frac{51-x+49}{49}=0\)
\(\Rightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
Vì \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
\(=\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\)
\(\frac{51-x}{49}+1=-5+5\)
đoạn này có 5 là do mik mượn 5 con 1 khi đó nha
\(=\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\)
\(\frac{100-x}{49}=0\)
\(=\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
mà \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}< 0\)
nên 100-x=0
còn lại bn từ lm
Giải phương trình sau:
\(\frac{x-1009}{1001}\)+ \(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)= 7
x-1009/1001+x-4/1003+x+2010/1005=7
((x-1009/1001)-1))+((x-4/1003)-2)+((x+2010/1005)-4))=0
(x-2010/1001)+(x-2010/1003)+(x-2010/1005)=0
(x-2010)*(1/1001+1/1003+1/1005)=0
okk!!!!!!!!!!!!!!!
Giải các phương trình sau:
a)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
b) \(\frac{201-x}{99}+\frac{203-x}{27}=\frac{205-x}{95}+3\)
c) \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
a) x+1/2004 + 1 + x+2/2003 +1 - x+3/2002 +1 - x+4/2001 +1
=> x+2005/2004 + x+2005/2003 - x+2005/2002 - x+2005/2001=0
=> (x + 2005) ( 1/2004+1/2003 - 1/2002 - 1/2001) =0
ta thấy 1/2004+1/2003-1/2002-1/2001 # 0
=> x+2005=0 => x=-2005
Tìm nghiệm nguyên của phương trình
\(\left[\frac{x}{1!}\right]+\left[\frac{x}{2!}\right] +\left[\frac{x}{3!}\right]+...+\left[\frac{x}{10!}\right]=1001\)
Giải phương trình
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\Leftrightarrow\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
\(\Leftrightarrow\frac{x-45-55}{55}+\frac{x-47-53}{47}-\frac{x-55-45}{45}-\frac{x-53-47}{47}=0\)
\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{47}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy pt có tập nghiệm S = { 100 }