Những câu hỏi liên quan
NA
Xem chi tiết
TN
17 tháng 5 2019 lúc 11:24

P=\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\left(\frac{\sqrt{x}-3}{2\sqrt{x}-x}\right)=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{4-x}\right).\frac{2\sqrt{x}-x}{\sqrt{x}-3}=\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right].\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{\left(4x+8\sqrt{x}\right).\sqrt{x}.\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x}{\sqrt{x}-3}\)

Bình luận (0)
LN
Xem chi tiết
QT
Xem chi tiết
AN
18 tháng 9 2019 lúc 16:44

d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)

\(\Leftrightarrow x^3=6-5x\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow x=1\)

Bình luận (0)
AN
19 tháng 9 2019 lúc 13:39

c/

\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=3-1=2\)

Bình luận (0)
AN
19 tháng 9 2019 lúc 14:05

b/ \(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{25}}\)

\(=\sqrt{4+5}=3\)

Bình luận (0)
NH
Xem chi tiết
KT
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Bình luận (0)
NH
Xem chi tiết
CB
Xem chi tiết
H24
20 tháng 5 2016 lúc 8:51

em mới học lớp 5

Bình luận (0)
HN
20 tháng 5 2016 lúc 9:23

\(2B=5\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\sqrt{5}\right)^2+\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}-\sqrt{5}\right)^2 \)

\(=5\left(\left(\sqrt{3}+1\right)+\left(\sqrt{5}-1\right)-\sqrt{5}\right)^2+\left(\left(\sqrt{3}-1\right)+\left(\sqrt{5}+1\right)-\sqrt{5}\right)^2\)

\(=5\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^2=5.3+3=18\)

\(\Rightarrow B=9\)

Bình luận (0)
TG
Xem chi tiết
BT
24 tháng 11 2019 lúc 20:09

\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)

\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)

\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)

\(=\sqrt{5}+\sqrt{2}+1\)

\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
YK
Xem chi tiết
MT
Xem chi tiết