Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
FL
Xem chi tiết
HG
1 tháng 11 2015 lúc 12:07

Nếu 2 số không chia hết cho 3cos số dư khác nhau

=> 2 số đó chia 3 dư 1 và 2

=> 2 số đó là 3k+1 và 3q+2

=> tổng 2 số đó là:

3k + 1 + 3q + 2 = 3.(k + q) + 3 = 3.(q + k + 1) chia hết cho 3

=> Tổng 2 số không chia hết cho 3 có số dư khác nhau sẽ chia hết cho 3 (đpcm)

Bình luận (0)
LT
Xem chi tiết
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 2:52

Bình luận (0)
NS
16 tháng 1 2021 lúc 9:44

Có n không chia hết cho 3

=> n^2 không chia hết cho 3 (1)

Vì n^2 là số chính phương

=> n^2 chia cho 3 dư 1 hoặc 0 (2)

Từ (1) và (2) => n^2 chia 3 dư 1

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
18 tháng 5 2019 lúc 4:53

Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)

Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra  n 2  chia cho 3 dư 1.

Nếu n = 3k+2 thì   n 2  = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra  n 2  chia cho 3 dư 1.

=>  ĐPCM

Bình luận (0)
DH
Xem chi tiết
TF
6 tháng 4 2016 lúc 20:12

vì n chia hết cho 2 mà 1 ko chia hết cho 2 nên n+1 ko chia hết cho 2

Bình luận (0)
NM
4 tháng 4 2016 lúc 20:33

n chia hết cho => n là số chẵn

=>n+1 là số lẻ nên ko chia hết cho 2

Bình luận (0)
TS
4 tháng 4 2016 lúc 20:36

Khi n chia hết cho 2 \(\Leftrightarrow\) n là số chẵn

n+1 là lẻ

nên n+1 ko chia hết cho 2

Bình luận (0)
HT
Xem chi tiết
H24
17 tháng 6 2019 lúc 16:26

#)Ghi lại đề đê !

a và b chia hết cho 3 sẵn òi, k có CM thêm ns đâu !

Bình luận (0)
LQ
Xem chi tiết
ND
20 tháng 9 2023 lúc 20:58

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

Bình luận (0)
PM
Xem chi tiết
NT
Xem chi tiết
NH
24 tháng 7 2015 lúc 8:55

chắc phải làm dài hơn đấy

Bình luận (0)
FZ
24 tháng 7 2015 lúc 8:57

ngo le ngoc hoa:Quản lí của olm.

Bình luận (0)
H24
6 tháng 10 2016 lúc 19:37

nhin thoi da ko muon lam suy nghi di ko den lop ma hoi cac ban minh chac ai cung tra loi duoc

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2017 lúc 13:37

Bình luận (0)