Những câu hỏi liên quan
DV
Xem chi tiết
NL
27 tháng 9 2019 lúc 18:21

\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)

\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)

Bình luận (0)
TL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
QH
Xem chi tiết
MP
Xem chi tiết
VH
28 tháng 1 2019 lúc 21:13

áp dụng bdt cô-si ta có P\(\ge\)2

dấu = xảy ra khi (a+b)2=ab 

Bình luận (0)
H24
28 tháng 1 2019 lúc 21:29

\(\text{Giải}\)

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Ấp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

\(P=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{a+b}{\sqrt{ab}}.\frac{3}{4}\)

\(\text{ÁP DỤNG BĐT Cô-si Ta đc:}\)\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{\left(a+b\right)\left(\sqrt{ab}\right)}{4\sqrt{ab}\left(a+b\right)}}=1\)

Theo BĐT Cô si ta đc:\(\frac{3}{4}.\frac{a+b}{\sqrt{ab}}\ge\frac{3}{4}.2=\frac{3}{2}\)

\(\Rightarrow P_{min}=\frac{3}{2}.\text{Dấu "=" xảy ra khi: a=b}\)

Bình luận (0)
H24
28 tháng 1 2019 lúc 21:29

fuc* 

Pmin=3/2+1=5/2 nhé

Bình luận (0)
NV
Xem chi tiết
DT
Xem chi tiết
DD
Xem chi tiết