Những câu hỏi liên quan
CN
Xem chi tiết
NL
22 tháng 2 2021 lúc 17:00

\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

\(A_{min}=3\) khi \(a=1\)

Bình luận (1)
HH
Xem chi tiết
TL
20 tháng 3 2020 lúc 21:15

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NC
22 tháng 3 2020 lúc 23:23

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
EC
Xem chi tiết
FZ
Xem chi tiết
TL
29 tháng 10 2015 lúc 19:17

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3 = (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1

Vậy Min A = 3 tại a = 1

Bình luận (0)
H24
29 tháng 12 2017 lúc 20:34
Biến đổi: a4-2a3+a2+2a2-4a+2+3=(a2-a)2+2(a-1)2+3>=3=>Amin=3<=>x=1 
Bình luận (0)
H24

bài làm

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3

= (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0

và a - 1 = 0

<=> a = 1

Vậy AMin = 3 tại a = 1

hok tốt

Bình luận (0)
XN
Xem chi tiết
HP
24 tháng 1 2017 lúc 15:56

A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-1)2+2(a-1)2+3 >= 3 với mọi x (do 2 cái ngoặc >= 0)

minA=3,dấu "=" xảy ra <=> a=1

Bình luận (0)
XN
24 tháng 1 2017 lúc 16:16

bạn viết sai rồi phải là (a2-a)2 chứ

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 3 2016 lúc 20:13

Câu 1 nha bạn 

x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 + 1 - x^3

=> x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 - x^3 - 1

=> x^2 ( x^2 + x + 1 ) + 2014 ( x^2 + x + 1 ) - ( x - 1 )( x^2 + x + 1 ) 

=> ( x^2 + x + 1 )( x^2 + 2014 - x - 1)

Bình luận (0)
EC
Xem chi tiết
LT
5 tháng 2 2017 lúc 9:50

A = a^4 - 2a^3 +a^2 + 2a^2 - 4a + 2 +3 
A = ( a^4 - 2a^3 + a^2) + 2 ( a^2 - 2a +1) +3 
A = ( a^2 - a)^2 + 2 ( a-1)^2 + 3 Có ( a^2 - a )^2 >= 0 với mọi giá trị của a 
và ( a-1)^2 >=0 với mọi giá trị của a 
Nên suy ra ta có => (a^2 - a)^2 + 2(a - 1)^2 + 3 >= 3 
Dấu " = " xảy ra <=> a -1 =0 
<=> a = 1 
Vậy B min = 3 <=> a =1 

Bình luận (0)
TT
5 tháng 2 2017 lúc 10:33

Ta có : A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-a)2+2(a-1)2+3

Mà : \(\left(a^2-a\right)^2+2\left(a-1\right)^2\ge0\)

\(\Rightarrow\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Vậy MinA=3

Dấu "=" xảy ra khi a-1=0

                       \(\Rightarrow\) a=1

Bình luận (0)
TQ
4 tháng 4 2017 lúc 21:03

a = 1 mình làm được đấy !

Bình luận (0)