Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HT
Xem chi tiết
H24
16 tháng 1 2020 lúc 22:34

Nếu n có dạng 2k ( k nguyên dương )

Khi đó:
\(M=2k\cdot4^{2k}+3^{2k}=2k\cdot16^k+9^k\)

Ta có:

\(16^k\equiv2^k\left(mod7\right);9^k\equiv2^k\left(mod7\right)\Rightarrow2k\cdot2^k+2^k\equiv M\left(mod7\right)\)

\(\Rightarrow M\equiv2^k\left(2k+1\right)\left(mod7\right)\Rightarrow2k+1⋮7\Rightarrow k\) chia 7 dư 3

\(\Rightarrow k\) có dạng 7q+3

Khi đó n có dạng 14q+6

Nếu n có dạng 2k+1 ( k là số nguyên dương ) 

Khi đó:

\(M=n\cdot4^n+3^n=\left(2k+1\right)\cdot4^{2k+1}+3^{2k+1}=4\left(2k+1\right)\cdot16^k+3\cdot9^k\)

Tương tự ta có:

\(M\equiv\left(8k+4\right)\cdot2^k+3\cdot2^k\left(mod7\right)\Rightarrow M\equiv2^k\left(8k+7\right)\left(mod7\right)\)

\(\Rightarrow8k+7⋮7\Rightarrow8k⋮7\Rightarrow k⋮7\Rightarrow k\) có dạng 7p

Khi đó:\(n=2k+1=14p+1\)

Vậy......

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
28 tháng 6 2019 lúc 9:07

Bình luận (0)
HH
Xem chi tiết
NH
13 tháng 1 2016 lúc 18:18

8 : 5 dư 3 => a = 3

số liền sau của 3 là 4 => b = 4

số không phải số nguyên âm không phải số nguyên dương là số 0 => c = 0

vậy số cần tìm là -340

Bình luận (0)
NH
Xem chi tiết
HN
Xem chi tiết
AH
7 tháng 9 2024 lúc 18:32

a/

Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$

$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$

b.

Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:

$n+7\vdots 3n-1$

$\Rightarrow 3(n+7)\vdots 3n-1$

$\Rightarrow (3n-1)+22\vdots 3n-1$

$\Rightarrow 22\vdots 3n-1$

$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$

$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$

Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$

Bình luận (0)
AH
7 tháng 9 2024 lúc 18:32

a/

Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$

$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$

b.

Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:

$n+7\vdots 3n-1$

$\Rightarrow 3(n+7)\vdots 3n-1$

$\Rightarrow (3n-1)+22\vdots 3n-1$

$\Rightarrow 22\vdots 3n-1$

$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$

$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$

Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$

Bình luận (0)
AH
7 tháng 9 2024 lúc 18:34

c/ Với $n$ nguyên, để $\frac{3n+2}{4n-5}$ là số tự nhiên thì:

$3n+2\vdots 4n-5$

$\Rightarrow 4(3n+2)\vdots 4n-5$

$\Rightarrow 3(4n-5)+23\vdots 4n-5$

$\Rightarrow 23\vdots 4n-5$

$\Rightarrow 4n-5\in \left\{\pm 1; \pm 23\right\}$

$\Rightarrow n\in \left\{\frac{3}{2}; 1; 7; \frac{-9}{2}\right\}$

Do $n$ nguyên nên $n=1$ hoặc $n=7$

Thử lại thấy $n=7$ là kết quả duy nhất thỏa mãn phân số đã cho là số tự nhiên.

Bình luận (0)
HT
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 11 2017 lúc 9:52

Bình luận (0)
NL
Xem chi tiết
TN
24 tháng 6 2016 lúc 18:36

a)Để n+3/n-2 thuộc Z

=>n+3 chia hết n-2

=>n-2+5 chia hết n-2

=>5 chia hết n-2

=>n-2 thuộc Ư(5)={1;-1;5;-5}

=>n thuộc {3;1;7;-3}

Bình luận (0)
NH
25 tháng 6 2016 lúc 7:35

a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z

=> n+3 chia hết n-2

=> (n-2) +5 chia hết n-2

=>5 chia hết n-2

=>n-2 thuộc Ư(5)={1;-1;5;-5}

Ta có:

n -21-1-55
n31-37
Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2017 lúc 10:45

l i m   u n   = l i m   3 n   -   4 n   +   1 2 . 4 n   +   2 n   =   - 1 2

Bình luận (0)