Tìm x: \(3^{X-1}+4.3^{X-2}=\frac{7}{243}\)
tìm x biết
(3x-2)\(^5\) =-243
\(\frac{1}{9}.27^x=3^x\)
\(\frac{1}{3^2}.3^4.3^n=3^7\)
a) ...
(3x-2)^5=(-3)^5
=) 3x-2=(-3)
3x=(-1)
x=(-1/3)
DUYỆT CHO MÌH ĐI RỒI MÌH LẠI GIẢI TIẾP CHO
\(\left(3x-2\right)^5=-243\)
=> \(\left(3x-2\right)^5=\left(-3\right)^5\)
=> 3x - 2 = -3
=> 3x = -3 + 2
=> 3x = -1
=> x = -1/3
\(\frac{1}{9}.27^x=3^x\)
=> \(3^{-2}.\left(3^3\right)^x=3^x\)
=> 3-2.33x=3x
=> 33x-2=3x
=> 3x - 2 = x
=> 3x - x = 2
=> 2x = 2
=> x = 1
\(\frac{1}{3^2}.3^4.3^n=3^7\)
=> \(3^{-2}.3^4.3^n=3^7\)
=> 3n+4-2=37
=> n + 4 - 2 = 7
=> n = 7 + 2 - 4
=> n = 5
1.(3x-2)5=-243=(-3)5
=>3x-2=-3
=>3x=-3+2=-1
=>x=-1/3
2.1/9.27x=3x
=>\(\frac{1}{9}=3^x:27^x=\frac{3^x}{27^x}=\left(\frac{3}{27}\right)^x=\left(\frac{1}{9}\right)^x\Rightarrow x=1\)
3.1/32.34.3n=37
=>3-2.34.3n=37
=>3-2+4+n=37
=>(-2)+4+n=7
=>2+n=7=>n=5
Vậy n=5
Tim x :
\(a.\left\{\frac{1}{2}-\frac{1}{3}\right\}.6^x+6^{x+2}=6^{10}+6^7\)
\(b.\left\{\frac{1}{2}-\frac{1}{6}\right\}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
ai nhanh mk tk !
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
Tìm x thuộc N biết :
a) \(\left(\frac{3}{2}\right)^x=\frac{11.\left(-3\right)^{22}.3^7+9^3.3^{14}}{\left(4.3^{14}\right)^2}\)
b)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{7}{9}\)
1.tìm số nguyên x biết:
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
b)\(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
giúp mk với
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
Tìm số nguyên x, nếu biết
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\left(\frac{1}{3}+\frac{1}{6}\right)2^{x+4}-2^x=2^{13}-2^{10}\)
\(\left(\frac{1}{2}-\frac{1}{6}\right)3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
a, \(3^{x-1}+4.3^{x-2}=\frac{7}{243}\) \(\left(x\in Z\right)\)
b , \(x\left(x-y\right)=\frac{3}{10}\)và y(x-y) =\(\frac{-3}{50}\)
c , \(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)
Mn giúp mik với ...! Mik đang cần gấp
Thanks mn trc.^.^
tìm x
a , \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
b, \(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5
Đề bài
Giải mỗi bất phương trình sau:
a) \({3^x} > \frac{1}{{243}}\)
b) \({\left( {\frac{2}{3}} \right)^{3x - 7}} \le \frac{3}{2}\)
c) \({4^{x + 3}} \ge {32^x}\)
d) \(\log (x - 1) < 0\)
e) \({\log _{\frac{1}{5}}}(2x - 1) \ge {\log _{\frac{1}{5}}}(x + 3)\)
f) \(\ln (x + 3) \ge \ln (2x - 8)\)
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
\(3^{x-3}+4.3^{x-2}=\frac{7}{729}\)