Những câu hỏi liên quan
PC
Xem chi tiết
TL
Xem chi tiết
TA
3 tháng 7 2017 lúc 11:23

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

Bình luận (0)
H24
2 tháng 7 2017 lúc 23:19

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

Bình luận (0)
NT
Xem chi tiết
QL
Xem chi tiết
CD
Xem chi tiết

Ta có : \(A=3n^2-16n-12\)

\(=3n\left(n-6\right)+2\left(n-6\right)\)

\(=\left(n-6\right)\left(3n+2\right)\)

Vì n là số nguyên dương nên \(n-6< 3n+2\)

Vì A là số nguyên tố nên A chỉ có 2 ước nguyên dương là 1 và chính A 

\(\Rightarrow n-6=1\)

\(\Rightarrow n=7\)

Thử lại : Thay n vào A ta được :

\(A=\left(7-6\right)\left(3.7+2\right)=23\)(là số nguyên tố)

Vậy n=6 thì A là số nguyên tố .

Bình luận (0)
 Khách vãng lai đã xóa
L7
Xem chi tiết
NT
27 tháng 7 2023 lúc 20:08

Để A là số nguyên thì 3n+5 chia hết cho n+4

=>3n+12-7 chia hết cho n+4

=>n+4 thuộc {1;-1;7;-7}

=>n thuộc {-3;-5;3;-11}

Bình luận (0)
TN
Xem chi tiết
NM
28 tháng 3 2023 lúc 21:45

Ta có: \(A=\dfrac{3n-4}{3-n}=\dfrac{5-3\left(3-n\right)}{3-n}=\dfrac{5}{3-n}-3\)  ( ĐK:\(n\ne3\))

Để \(A\inℤ\) mà \(-3\inℤ\) \(\Rightarrow\dfrac{5}{3-n}\inℤ\)\(\Leftrightarrow3-n\in\text{Ư}\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Leftrightarrow n\in\left\{2;-2;4;8\right\}\).

 

Bình luận (0)
AB
28 tháng 3 2023 lúc 20:56

Để �=3�+4�−1 đạt giá trị nguyên

<=> 3n + 4  n - 1

=> ( 3n - 3 ) + 7  n - 1

=> 3 . ( n - 1 ) + 7  n - 1 

⇒{3(�−1)⋮�−17⋮�−1

=> n - 1  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-1 -7 -1 1 7
n -6 0 2 8

Vậy x  { - 6 ; 0 ; 2 ; 8 }

Bình luận (0)
NT
Xem chi tiết
TA
Xem chi tiết
VT
19 tháng 4 2020 lúc 22:55

a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)

b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)

A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)

\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)

\(\Rightarrow n=-3;-5;13;-21\)

học tốt

Bình luận (0)
 Khách vãng lai đã xóa