Tính A=(36-36/7^100) : (1/7 + 1/7^2 + 1/7^3 + ... + 1/7^100)
Tính \(A=\left(36-\frac{36}{7^{100}}\right):\left(\frac{1}{7^1}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
Đặt \(E=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\)
\(\Rightarrow7E=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\)
\(\Rightarrow7E-E=\left(1+\frac{1}{7}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6E=1-\frac{1}{7^{100}}\)
\(\Rightarrow E=\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=\left(36-\frac{36}{7^{100}}\right):\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=36\left(1-\frac{1}{7^{100}}\right).\frac{6}{1-\frac{1}{7^{100}}}\)
\(\Rightarrow A=36.6=216\)
b, tinh
(36 - 36/76^100 ) : (1/7 + 1/7^2 +1/7^3 + ... +1/7^100)
cho t =1/7^2 +2/7^3+3/7^4+....+99/7^100 chứng minh t < 1/36
Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$
$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$
$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$
$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$
$\Rightarrow T< \frac{1}{36}$
CMR \(\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{100}{7^{100}}< \frac{7}{36}\)
tính nhanh A=1/3-3/4-(-3/5)+1/72-2/9-1/36+1/15
B=1/5-3/7+5/9-2/11+7/13-9/6-7/13+2/11-5/9-3/7-1/5
C1/100-1/100.99-1/99.98-1/98.87-...-1/3.2-1/2.1
tính nhanh :
A = 1/3 - 3/4 -(-3/5) +1/72-2/9-1/36+1/15
B= 1/5 -3/7 +5/9 -2/11+7/13-9/16-7/13+2/11-5/9+3/7 -1/5
C= 1/100-1/100.99- 1/99.98-1/98.97......-1/3.2 - 1.2.1
cho t =1/7^2 +2/7^3+3/7^4+....+99/7^100 chứng minh t < 1/36 mình đang cần gấp
Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$
$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$
$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$
$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$
$\Rightarrow T< \frac{1}{36}$
tính hợp lí
1/ 1+(-6)+11+(-16)+21+(-26)+31+(-36)
2/ 1+(-3)+2+8+(-7)+7+3+9+17+100+(-7)
1/ 1+(-6)+11+(-16)+21+(-26)+31+(-36)
= -20
2/1+(-3)+2+8+(-7)+7+3+9+17+100+(-7)
=130
1/ [1+(-6)]+[11+(-16)]+[21+(-26)]+[31+(-36)]
=(-5).4
=20
2/ [1+2+(-3)]+[(-7)+7]+[17+(-7)]+(8+3+9)+100
=0+0+10+20+100
=130
Tính nhanh:
A = 1/3 - 3/4 - ( - 3/5 ) + 1/72 - 2/9 - 1/36 + 1/15
B = 1/ 5 - 3/7 + 5/9 - 2/11 + 7/13 - 9/16 - 7/13 + 2/11 - 5/9 + 3/7 - 1/5
C = 1/100 - 1/100 . 99 - 1/99 . 98 - 1/98 . 97 - ... - 1/3 . 2 - 1/ 2 . 1
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(B=\left(\frac{3}{7}+\frac{-3}{7}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{5}{9}+\frac{-5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)\)
\(+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)
\(=0+0+0+0-\frac{1}{16}\)
\(=\frac{-1}{16}\)