Những câu hỏi liên quan
DD
Xem chi tiết
TT
24 tháng 2 2020 lúc 17:10

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
HT
Xem chi tiết
TD
3 tháng 1 2020 lúc 21:58

từ gt \(\Rightarrow p=\frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}\)suy ra b chẵn

Đặt b = 2k thì \(p=\frac{k}{2}\sqrt{\frac{a-k}{a+k}}\Leftrightarrow\frac{4p^2}{k^2}=\frac{a-k}{a+k}\)

đặt \(\frac{2p}{k}=\frac{m}{n}\)với ( m,n ) = 1 và d = ( a-k ; a+k ) \(\Rightarrow\hept{\begin{cases}a-k=dm^2\\a+k=dn^2\end{cases}\Rightarrow2k=d\left(n^2-m^2\right)}\)

và \(4pn=dm\left(n^2-m^2\right)\)

Nếu m,n cùng lẻ thì \(4pn=dm\left(n^2-m^2\right)⋮8\)nên p chẵn tức là p = 2 suy ra ....

Nếu m,n không cùng lẻ thì m chia 4 dư 2 ( do 2p không là số chẵn không chia hết cho 4 và \(\frac{2p}{k}\) là phân số tối giản )

Khi đó n là số lẻ nên n2 - m2 là số lẻ nên không chia hết cho 4 suy ra d là số chia hết cho 2 

đặt d = 2r, ta có 2pn = rm ( n- m) mà ( n- m2 , n ) = 1 \(\Rightarrow r⋮n\)

đặt r = ns ta có : 2p = s ( n - m ) ( n + m ) m . Do n-m,n+m đều lẻ nên n+m=p,n-m = 1

\(\Rightarrow s,m\le2\)và ( m,n ) = ( 1,2 ) và ( 2,3 )

với m = 1, n = 2 thì p = 3 , b = 24 , a = 20

với m = 2 , n = 3 thì p = 5, b = 30, a = 39

Vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
6 tháng 9 2020 lúc 20:23

Một bài khó hơn nha bạn tham khảo :D vô TKHĐ của tớ

Nguồn bài này là Iran MO 1998 bạn có thể tham khảo lời giải của giáo sư Titu Andresscu tại đây:

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
6 tháng 9 2020 lúc 20:26

Lời giải của Titu Andresscu: 

Bình luận (0)
 Khách vãng lai đã xóa
PS
Xem chi tiết
S4
22 tháng 11 2015 lúc 21:44

nếu p=2 thì 14+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3

nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3

từ đó suy ra q=3

nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố

tương tự trên ta có p=3

Bình luận (0)
NT
Xem chi tiết
TM
Xem chi tiết
FB
Xem chi tiết
H24
19 tháng 5 2021 lúc 10:38

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

Bình luận (0)
NH
Xem chi tiết
BH
Xem chi tiết