Cho M=\(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
Tìm các gt nguyên của A để M thuộc Z
Cho phân thức: \(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
Tìm giá trị nguyên của a để M nhận giá trị nguyên.
\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)
Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
a - 2 | 1 | -1 | 2 | -2 | 4 | -4 |
a | 3 | 1 | 4 | 0 | 6 | -2 |
Vậy...
Help me:
Cho M = (a4 - 16 ) tat ca tren cho a4 - 4a3 + 8a2 - 16a +16
Tìm a để M NHẬN GIÁ TRỊ NGUYÊN..
cho P=\(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
rút gọn P và tìm nghiệm của a để P nhận giá trị nguyên
*) Rút gọn \(P=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a-2\right)^2\left(a^2+4\right)}=\frac{a+2}{a-2}\)
*)Tìm nghiệm \(\frac{a+2}{a-2}=0\)
\(\Rightarrow a+2=0\Rightarrow a=-2\)
*)Giá trị nguyên
\(P=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=\frac{a-2}{a-2}+\frac{4}{a-2}=1+\frac{4}{a-2}\)
Suy ra 4 chia hết a-2
làm nốt
Cho M=\(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
Rut gon roi tim gia tri nguyen cua a de M nguyen.
Giup minh nhe minh dang can gap.
M = \(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
=> M = \(\frac{\left(a^2+4\right)\left(a^2-4\right)}{\left(a^4-4a^3+4a^2\right)+\left(4a^2-16a+16\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}\)
M = \(\frac{a+2}{a-2}\)
rút gọn : A = a4 -16 / a4 - 4a3 + 8a2 -16a +16
A = (a^2+4).(a^2-4)/(a^4+4a^2)-(4a^3+16a)+(4a^2+16)
= (a^2+4).(a^2-4)/(a^2+4).(a^2-4a+4)
= (a^2+4).(a-2).(a+2)/(a^2+4).(a-2)^2
= a+2/a-2
Tk mk nha
cho biểu thức Q = a^4 +2a^3 - 16a^2 -2a +15 . tìm tất cả các giá trị nguyên của a để Q chia hết cho 16
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
2. Cho \(P=\frac{3-a}{a+10}\) ( a thuộc Z)
a/ Tìm a để P>0
b/ Tìm a để P<0
3. Tìm các số hữu tỉ x, y, z biết:
a/ \(\frac{7}{3}< x< \frac{17}{2}\)
b/ \(\frac{-3}{2}< y< 2\)
c/ \(\frac{-17}{3}< z< \frac{-3}{2}\)
4/ Cho a, b, m thuộc Z; m>0
Chứng minh rằng nếu a<b thì
\(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
bài 4.
\(\frac{a}{m}\)=\(\frac{2a}{2m}\)=\(\frac{a+a}{2m}\); \(\frac{a+b}{2m}\)
Vì ta có a<b=> a+a<a+b
=> \(\frac{a+a}{2m}\)<\(\frac{a+b}{2m}\)=>\(\frac{a}{m}\)<\(\frac{a+b}{2m}\)(1)
\(\frac{b}{m}\)=\(\frac{2b}{2m}\)=\(\frac{b+b}{2m}\); \(\frac{a+b}{2m}\)
Vì a<b=>a+b<b+b
=>\(\frac{a+b}{2m}\)<\(\frac{b+b}{2m}\)=>\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)(2)
từ(1) và(2) ta có \(\frac{a}{m}\)<\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)