Cho tam giác PMN (có P<90 độ),Px là tia nằm giữa hai tia PM và PN .kẻ MH vuông góc với Px ;NK vuông góc với Px(H,K thuộc Px)CMR: MH+NK<MN
Cho tam giác MNP có PM = PN . Chứng minh góc PMN = góc PNM
Ta có: ∆MNP có PM=PN
=>∆MNP cân tại P
=> góc PMN=góc PNM (dpcm)
Cho tam giác PMN biết PM= 6, MN= 9, PN= 5.
Cho tam giác MNP. CMR:
Nếu góc PMN=PNM thì PM=PN
Xét ΔMNP có :
PM = PN ( gt )
⇒ ΔMNP cân.
⇒ ^PMN = ^PNM ( t/c Δcân )
Cho tam giác nhọn ABC .Về phía ngoài của tam giác vẽ các tam giác vuông cân ABD và ACE đều vuông tại A . Gọi M và N là trung điểm của BD,CE ,P là trung điểm BC
CMR tam giác PMN vuông cân
- Xét ΔDAC và ΔBAE ta có:
AB=AD (ΔABD vuông cân ở A)
AC=AE (ΔACE vuông cân ở A)
DAC^=BAE^=BAC^+90o
→ΔDAC=ΔBAE (cgc)
→DC=BE (2 cạnh tương ứng) (1)
- Ta có P;M;N là trung điểm BC;BD;EC nên
+ PN là đường trung bình ΔBEC→PN=EB/2 (2);PN//EB
+ PM là đường trung bình ΔBCD→PM=DC/2 (3);PM//DC
+ từ (1); (2); (3) ta có PN=PM (*)
+ M1^M1^ là góc ngoài tại đỉnh M của ΔEMC nên M1^=E1^+MCE^=E1^+C1^+C2^
Mà C2^=E2^ (ΔDAC=ΔBAE). Thay vào ta có
M1^=E1^+C1^+E2^=AEC^+C1^=90o (vì ΔAEC vuông cân ở A)
→DC⊥BE→DC⊥BE. Mà BE//PN→PN⊥DC
Mà PM//DC→PN⊥PM→MPN^=90o (*)(*)
+ Từ (*) và (*)(*) ta có ΔMPN vuông cân ở P (đpcm)
Cho tam giác nhọn ABC.Về phía ngoài của tam giác vẽ các tam giác vuông cân ABD và ACE vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung điểm của BC. Chứng minh tam giác PMN cân.
Cho tam giác nhọn ABC. Về phía ngoài của tam giác vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung điểm của BC.C/m tam giác PMN vuông cân
Cho tam giác PMN vuông tại P biết PM = 16cm ; PN = 12cm và MQ là đường trung tuyến của tam giác. Trên tia đối của tia QM lấy một điểm S sao cho QS = QM.
a) Áp dụng định lí Pytago, tính MN?
b) Chứng minh tam giác PMQ = tam giác NSQ.
c) Chứng minh rằng: PS = MN.
d) So sánh góc PMS và góc MNS.
Mọi người giúp em ạ!
a: \(MN=\sqrt{16^2+12^2}=20\left(cm\right)\)
b: Xét ΔPMQ và ΔNSQ có
QP=QN
\(\widehat{PQM}=\widehat{NQS}\)
QM=QS
Do đó: ΔPMQ=ΔNSQ
Cho tam giác ABC , M là trung điểm AB , N là trung điểm AC, P là trung điểm BC. Chứng minh tam giác ABC đồng dạng với tam giác PMN
Mọi người giúp e với ạ , e cảm ơn
Answer:
Xét tam giác ABC:
M, N, P lần lượt là trung điểm của AB, AC, BC
=> MN, MP, NP là đường trung bình của tam giác ABC
\(\Rightarrow\frac{MN}{BC}=\frac{MP}{AC}=\frac{NP}{AB}=\frac{1}{2}\)
Xét tam giác PMN và tam giác ACB
\(\frac{PM}{AC}=\frac{MN}{CB}=\frac{PN}{AB}=\frac{1}{2}\)
Vậy tam giác PMN đồng dạng với tam giác ACB
Cho tam giác nhọn ABC. Về phía ngoài của tam giác vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung điểm của BC
Chứng minh tam giác PMN là tam giác cân
Gọi O là giao điểm DC và BE, I là giao điểm DC và AB
Ta có
góc DAB= góc EAC (=90)
góc BAC= góc BAC( góc chung)
-> góc DAB+ góc BAC= góc EAC+ góc BAC
-> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE ta có
AD=AB ( tam giác ABD vuông cân tại A)
AC=AE ( tam giác AEC vuông cân tại A)
góc DAC=góc BAE ( cmt)
-. tam giac DAC= tam giac BAE (c-g-c)
-> góc DAI= góc IBO ( 2 góc tương ứng)
ta có
góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)
góc DAI= góc IBO (cmt)
góc DIA= góc BIO ( 2 góc đối đỉnh)
--> góc BIO+góc IBO =90
Xét tam giác BIO ta có
góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)
90+ goc BIO=180
góc BIO=180-90=90
=> BE vuông góc DC tại O
Xét tam giác DBC ta có
M là trung điểm BD (gt)
P là trung điểm BC (gt)
-> MP la đường trung bình tam giác DBC
-> MP// DC và MP=1/2 DC
cmtt PN là đường trung bình tam giác BEC
-> PN//BE và PN=1/2BE
ta có
DC vuông góc BE tại O (cmt)
DC//MP (cmt)
-> MP vuông góc BE
mà BE// PN (cmt)
nên MP vuông góc PN tại P
--> tam giác MNP vuông tại P (1)
ta có
MP=1/2 DC (cmt)
PN=1/2BE (cmt)
DC=BE ( tam giac DAC = tam giac BAE)
--> MP=PN (2)
từ (1) và (2) suy ra tam giac MNP vuông cân tại P
cherrygirl nếu học nâng cao lớp 7 sẽ học đường trung bình đó bạn