Những câu hỏi liên quan
PC
Xem chi tiết
NT
10 tháng 2 2016 lúc 10:12

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

Bình luận (0)
NN
24 tháng 3 2021 lúc 21:10

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 3 2021 lúc 21:52

cũng dễ thôi

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
HT
2 tháng 12 2015 lúc 22:18

 Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0) 
theo tính chất tỷ lệ thức 
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2 
=> 1/(x+y+z) = 2 
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1) 
.(y+z+1)/x = 2 <=> y + z + 1 = 2x 
kết hợp với (1) => 1/2 - x + 1 = 2x 
<=> x = 1/2 => y + z = 0 <=> y = -z 
có (x+y-3)/z = 2 
<=> x + y - 3 = 2z 
<=> y - 2z = 5/2 
do y = -z => -3z = 5/2 <=> z = -5/6 
y = 5/6 

Bình luận (0)
CA
2 tháng 12 2015 lúc 22:23

mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.

tick cho mik nhé.

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KY
Xem chi tiết
NT
13 tháng 9 2015 lúc 6:12

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

Tick đúng cho mink nha!

Bình luận (0)
SC
2 tháng 10 2016 lúc 10:12

Làm sai bét

Bình luận (0)
BH
18 tháng 12 2017 lúc 20:15

bạn Nguyễn Quỳnh Trang ơi! 

Đề bài cho \(\frac{1}{x+y+z}\)thì có nghĩa là x+y+z\(\ne\)0 rồi bạn không cần phải xét đâu, còn nữa hình như bạn làm sai so với đầu bài rồi.

Bình luận (0)
LT
Xem chi tiết
MK
Xem chi tiết
HT
7 tháng 1 2020 lúc 9:05

\(\text{ABTC dãy tỉ số bằng nhau , ta có:}\)

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\text{​​=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2y+2z+2x}{x+y+z}}\)\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)\(=\frac{2y+2z+2x}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}\)\(=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\y+z+1=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+z+y+2=3y\\z+x+y-3=3z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+2=3y\\\frac{1}{2}-3=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa