Những câu hỏi liên quan
NH
Xem chi tiết
NT
1 tháng 2 2020 lúc 20:04

giai ho minh nhe ?

Bình luận (0)
 Khách vãng lai đã xóa
NH
1 tháng 2 2020 lúc 20:06

Vào ăn ké ak:))

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
UI
20 tháng 8 2020 lúc 22:49

Theo gt ta co \(\hept{\begin{cases}x^2+4=4y\left(1\right)\\y^2+4=4z\left(2\right)\\z^2+4=4x\left(3\right)\end{cases}}\)

Cong (1) ,(2) va (3) ta duoc

\(\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\\z-2=0\end{cases}\Leftrightarrow x=y=z=2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NM
29 tháng 11 2021 lúc 20:57

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

Bình luận (2)
NM
29 tháng 11 2021 lúc 21:07

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

Bình luận (0)
DP
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
LV
Xem chi tiết
TH
11 tháng 2 2016 lúc 21:29

moii hokk lopp 66 thôii

Bình luận (0)
NH
11 tháng 2 2016 lúc 21:30

con xin thánh làm ơn đừng có nói mấy câu này nữa Thieu Gia Ho Hoang

Bình luận (0)
DA
Xem chi tiết

Ta có:\(x^2+4y+4=0;y^2+4z+4=0;z^2+4x+4=0\)

\(\Leftrightarrow\left(x^2+4y+4\right)+\left(y^2+4z+4\right)+\left(z^2+4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4+y^2+4y+4+z^2+4z+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2=0\)

\(\left(x+2\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)

Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y+2=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\\z=-2\end{cases}\Leftrightarrow}x=y=z=-2}\)

Vậy\(x^{10}+y^{10}+z^{10}=x^{10}+x^{10}+x^{10}\)                         

                    \(=3\cdot x^{10}=3\cdot\left(-2\right)^{10}=3\cdot1024=3072\)

Bình luận (0)
NF
Xem chi tiết
CN
17 tháng 11 2015 lúc 21:05

tick di minh lam cho nha

Bình luận (0)