Những câu hỏi liên quan
H24
Xem chi tiết
VM
15 tháng 3 2020 lúc 20:05

hãy dùng cái đầu bạn nhé :))))

Bình luận (0)
 Khách vãng lai đã xóa
GL
16 tháng 3 2020 lúc 17:50

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

Bình luận (0)
 Khách vãng lai đã xóa
NA
10 tháng 7 2021 lúc 8:52

109ubbbbbbbhy3333333333333

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
TL
9 tháng 5 2020 lúc 18:32

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NL
9 tháng 7 2021 lúc 17:09

Dùng cái đầu đi ạ

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
AN
4 tháng 2 2019 lúc 6:31

Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được. 

(x² + 5x + 1)² = 0

Bình luận (0)
H24
4 tháng 2 2019 lúc 8:41

A ali : em có cách khác :D

Cộng 2 vế của 2 pt trên lại với nhau ta được

\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)

\(\Leftrightarrow y^2-2y+3x+1=0\)

\(\Leftrightarrow\left(y-1\right)^2=-3x\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)

Đến đây thế vào pt (2) sẽ tìm đc x 

Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V

Bình luận (0)
H24
8 tháng 2 2019 lúc 20:39

em quy đồng và khử mẫu lên nó ra thế này:

Pt (1) tương đương: \(x^2+x+3=2y\left(x+1\right)\Leftrightarrow y=\frac{x^2+x+3}{2\left(x+1\right)}\)

Thay vào pt (2) ta có: \(\left[\frac{x^2+x+3}{2\left(x+1\right)}\right]^2-x^2+2x.\frac{x^2+x+3}{2\left(x+1\right)}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2}{4\left(x+1\right)^2}-x^2+\frac{x\left(x^2+x+3\right)}{x+1}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x}{4\left(x+1\right)^2}=0\)

\(\Leftrightarrow\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x=0\)

thì khai triển tiếp hai sao ạ?

Bình luận (0)
NN
Xem chi tiết
NK
Xem chi tiết
BH
1 tháng 3 2020 lúc 20:42

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
2 tháng 2 2020 lúc 11:29

\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)

Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:

\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)

\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)

Từ đây tự tìm nốt nhé

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
GL

nhân 4 pt2 rồi cộng pt1 là ra

Bình luận (0)
 Khách vãng lai đã xóa
HD
2 tháng 5 2020 lúc 6:41

Trả lời :

- Bn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
SG
26 tháng 8 2017 lúc 10:38

chiều dài là:

36x,5=54(m)

CHU VI LÀ:

(54+36)x2=180(m2)

Bình luận (0)
H24
26 tháng 8 2017 lúc 12:24

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
AN
26 tháng 8 2017 lúc 14:14

\(\hept{\begin{cases}x^2y^2-2x+y^2=0\left(1\right)\\2x^3+3x^2+6y-12x+13=0\left(2\right)\end{cases}}\)

Dễ thấy \(x\ge0\)

Ta có:

\(\left(1\right)\Leftrightarrow y^2=\frac{2x}{x^2+1}\le1\)

\(\Leftrightarrow y\ge-1\left(3\right)\)

Ta lại có: 

\(\left(2\right)\Leftrightarrow y=\frac{12x-2x^3-3x^2-13}{6}\le-1\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)

Bình luận (0)