Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HT

Giải hệ phương trình

\(\hept{\begin{cases}2x^2+3xy+2x+y=0\\x^2+2xy+2y^2+3x=0\end{cases}}\)

TD
29 tháng 12 2019 lúc 21:21

\(\hept{\begin{cases}2x^2+3xy+2x+y=0\left(1\right)\\x^2+2xy+2y^2+3x=0\left(2\right)\end{cases}}\)

PT(1) - PT(2), ta được : \(x^2+xy-x+y-2y^2=0\Leftrightarrow\left(x^2-y^2\right)+\left(xy-x\right)-\left(y^2-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+x\left(y-1\right)-y\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)\left(y-1\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-2y\end{cases}}\)

cứ thế mà giải , đến đây dễ rồi

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
HP
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NK
Xem chi tiết
PT
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết