Tìm min của x^2+x-6
Tìm mã của x-x^2-1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
I :
a) Tìm min của : A=(x-1)^2+(x-2)^2
b) Tìm max của : B= 8x-4x^2-3
II: tìm x,y,z thỏa mãn
x^2+y^2+z^2=4x-2y+6z-14
help me
I:
a: \(=x^2-2x+1+x^2-4x+4\)
\(=2x^2-6x+5\)
\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu = xảy ra khi x=3/2
b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)
\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
Mọi người ơi cho em hỏi : Tìm min,max của bt: căn bậc 2 của x-2 cộng với căn bậc hai của 4-x
tìm Max thì bn bình phương lên r bunyakovsky
Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)
Cho x+y=1. Tìm MIN của biểu thức \(A=x^2+y^2\)
Ta có: A=x2+y2=1-2xy
Vì x+y=1 => x=1-y
Khi đó A=1-2(1-y)y
=1-2y+2y2
=\(2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}\)
=\(2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)
Vif \(2\left(y-\frac{1}{2}\right)^2\ge0\Rightarrow A=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi y=1/2 <=> x=1/2
Vậy Amin=1/2 khi x=y=1/2
Tìm Min của A = \(\dfrac{2010x+2680}{x^2+1}\)
Ta có:
\(A=\dfrac{2010x+2680}{x^2+1}\)
\(=\dfrac{-335x^2-335+335x^2+2010x+3015}{x^2+1}\)
\(=-335+\dfrac{335\left(x+3\right)^2}{x^2+1}\ge-335\)
Vậy \(Min_A=-335\) tại \(x=-3\)
Cho \(K=\left|x-\frac{1}{2}\right|+\frac{3}{4}-x\)Tìm min,max của K
dtydudjgbjbjbjvjkkdxkdiuryyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyykkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrrrrrrrrrrrrrrrrrrrrrrrrrnmdchytfegttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttdyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrr
ASDFGHJKL;''\\\\\\\\\\\\\\09876212EFGNM,///////////////,HHVSZZCCCCCCCCCCCCCCBBBBBBBBBBBBBBMMMMMMMMMMMMJJXGGJBDU.LH7UJKI,M MYN YBRROP
IJUL[
-PIIGDAAQWRTYUIOLP;LNBF1954DGW22568997TVV32V456
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
Tìm min , max của x2 +y2 biết x2.(x2 + 2y2 - 3) + (y2 - 2)2 = 1
I = |x+\(\frac{1}{2}\)| + |x+\(\frac{1}{3}\)| + |x+\(\frac{1}{4}\)| tìm min hoặc max của I
Ta có:
\(I=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=\left(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)
\(=\left(\left|x+\frac{1}{2}\right|+\left|-x-\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\ge\left|x+\frac{1}{2}-x-\frac{1}{4}\right|+\left|x+\frac{1}{3}\right|=\frac{1}{4}+\left|x+\frac{1}{3}\right|\ge\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\\x+\frac{1}{3}=0\end{cases}}\Leftrightarrow x=-\frac{1}{3}\)
Vậy min I = 1/4 đạt tại x = -1/3.
Tìm Min,Max của A=2019x/(x-2019)2
GIúp mình với sắp thi òi
Lời giải:
ĐK: $x\neq 2019$
PT $\Rightarrow A(x-2019)^2=2019x$
$\Leftrightarrow Ax^2-x(4038A+2019)+A.2019^2=0(*)$
Vì biểu thức $A$ xác định nên PT $(*)$ có nghiệm.
$\Rightarrow \Delta=(4038A+2019)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow 2019^2(2A+1)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow (2A+1)^2-(2A)^2\geq 0$
$\Leftrightarrow 4A+1\geq 0$
$\Leftrightarrow A\geq -\frac{1}{4}$
Vậy GTNN của $A$ là $\frac{-1}{4}$. $A$ không có GTLN