Những câu hỏi liên quan
NN
Xem chi tiết
NC
Xem chi tiết
AH
16 tháng 10 2021 lúc 19:18

Lời giải:
$x^3+y^3+z^3=x+y+z+2020$

$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$

$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$

Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$

$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$

Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.

Bình luận (0)
NH
Xem chi tiết
SS
Xem chi tiết
TK
Xem chi tiết
TK
Xem chi tiết
PH
Xem chi tiết
TT
15 tháng 6 2015 lúc 21:20

Giả sử có tồn tại một số n^2000 +1 chia hết cho 10

=> n^2000+1 chia hết cho 2 và 5 

* do n^2000+1 chia hết cho 5 => n^2000 có tận cùng là 4 hoặc 9

TH1 n^2000 có  tận cùng là 9 

do 2000 chia hết cho 4 => n^2000 có cùng số tận cùng với n^4 => n^4 có tận cùng là 9 => n lẻ 

nếu n có tận cùng là 1=> n^4 có tận cùng là 1 => loại 

nếu n có tận cùng là 3 => n^4 có tận cùng là 1=> loại 

nếu n có tận cùng là 5 => n^4 có tận cùng là 5 => loại 

nếu n có tận cùng là 7 => n^4 có tận cùng là 1 => loại 

nếu n có tận cùng là 9=> n^4 có tận cùng 1=> loại

vậy n ko tận cùng là 9 

th2 ; n ^2000  có tận cùng là 4 => n ^2000 chẵn => n^2000+1 lẻ => n^2000 +1 ko chia hết cho 2 => loại

vậy giả sử sai . ko tồn tại số n^2000 + 1 chia hết cho 10

 

Bình luận (0)
TT
15 tháng 6 2015 lúc 21:23

\(n^{2000}+1=\left(n^{1000}\right)^2+1\)

Vì các số bình phương có tận cùng bằng 0,1,9,6,5;4 mà tận cùng băng 9 thì (n^1000)^2 + 1 tận cùng 10 chia hết cho 10 

Vậy có tồn tại ( l ike nha)

Bình luận (0)
H24
Xem chi tiết
KJ
20 tháng 3 2019 lúc 20:46

Xét tổng (x-2y) + (4y-5z)+ (z+3x)+(-2x+2y-4z)

              =x-2y + 4y-5z +z+3x - 2x+2y-4z

             = (x+3x-2x)+(4y-2y+2y)+(z-5z-4z)

            = 2x+4y-8z

=>tổng trên là số chẵn 

=> /x-2y/+ /4y-5z/+/z+3x/+(-2x+2y-4z) phải là chẵn 

Mà 2017 lẻ nên ko tồn tại...  

Bình luận (0)
NL
Xem chi tiết
AX
13 tháng 10 2017 lúc 15:34

Có tồn tại

Bình luận (0)
DN
13 tháng 10 2017 lúc 15:44

có tồn tại

Bình luận (0)
DN
13 tháng 10 2017 lúc 20:25

có tồn tại

Bình luận (0)