Tìm hai số tự nhiên a,b. Bit ƯCLN(a, b) =7,ab=588 và a bé hơn b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm hai số tự nhiên a, b. Biết ƯCLN(a,b) = 7; ab = 588 và a < b.
\(ƯCLN\left(a,b\right)=7\\ \Rightarrow\left\{{}\begin{matrix}a=7p\\b=7q\end{matrix}\right.\left(p< q;p,q\in N\text{*}\right)\\ ab=588\\ \Rightarrow7p\cdot7q=588\\ \Rightarrow pq=12=1\cdot12=2\cdot6=3\cdot4\)
Mà \(p< q\)
\(\left\{{}\begin{matrix}p=1\\q=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=7\\b=84\end{matrix}\right.;\left\{{}\begin{matrix}p=2\\q=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=14\\b=42\end{matrix}\right.;\left\{{}\begin{matrix}p=3\\q=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=21\\b=28\end{matrix}\right.\)
Vậy \(\left(a,b\right)\in\left\{\left(7;84\right);\left(14;42\right);\left(21;28\right)\right\}\)
Đáp án: (a,b)={(4,84),(14,42),(21,28)} Giải thích các bước giải: Do Ư C L N ( a , b ) = 7 a, b chia hết cho 7 suy ra a,b là bội của 7 Ta có a b = 588 = 2 2 .3 .7 2 Do Ư C L N ( a , b ) = 7 a, b chia hết cho 7 suy ra a,b là bội của 7 Suy ra tích của a.b tách thành 2 số hạng đều chia hết cho 7 và có a
Tìm hai số tự nhiên a, b. Biết ƯCLN(a;b) = 7; ab = 588 và a < b.
a = 7, b = 84
Giải thích các bước giải:
ab = 588 => b = 588/a
a < b => ƯCLN (a; 588/a) = a = 7 => b = 84
Vì ƯCLN (a;b) = 7
➞ a = 7x
➞ b = 7y
a . b = 588
7x . 7y = 588
49 . x . y = 588
x . y = 588 : 49
x . y = 12
Với (x ; y) = 1 ; x . y = 12
x | 1 | 2 | 3 | 4 | 6 | 12 |
y = 12 : x | 12 | 6 | 4 | 3 | 2 | 1 |
a = 7 . x | 7 | 14 | 21 | 28 | 42 | 84 |
b = 7. y | 84 | 42 | 28 | 21 | 14 | 7 |
Vậy (a;b) = 7 ; 84
(a;b) = 14 ; 42
(a;b) = 21 ; 28
(a;b) = 28 ; 21
(a;b) = 42 ; 14
(a;b) = 84 ; 7
1. ƯCLN của hai số là 45. Số lớn là 270, tìm số bé.
2. Tìm hai số biết tổng của chúng là 162 và ƯCLN của chúng là 18.
3. Tìm hai số tự nhiên a và b, biết rằng BCNN(a,b) = 300; ƯCLN (a,b) = 15.
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
tìm 2 số a,b a>b biết a.b=300 và ucln[a,b]=5
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp1. m=4; n=5 hoặc ngược lại=> x=18*4=72 và y=18*5=90 hoặc ngược lại2. m=1 và n=8 hoặc ngược lại=> x=18 và y=144 hoặc ngược lại3. m=2 và n=7 hoặc ngược lại=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
tìm hai số tự nhiên a và b biết ab=3375 và ƯCLN(a,b)=15
Lời giải:
Vì ƯCLN của $(a,b)=15$ nên đặt $a=15x, b=15y$ với $x,y$ là các số tự nhiên nguyên tố cùng nhau.
Ta có:
$ab=15.x.15.y=3375$
$xy=3375:(15.15)=15$. Vì $x,y$ nguyên tố cùng nau nên xét các trường hợp sau:
TH1: $x=1; y=15\Rightarrow a=15; b=225$
TH2: $x=3; y=5\Rightarrow a=45; b=75$
TH3: $x=5; y=3\Rightarrow a=75; b=45$
TH4: $x=15; y=1\Rightarrow a=225; b=15$
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
c.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:
$BCNN(a,b)=7.ƯCLN(a,b)$
$\Rightarrow dxy=7.d$
$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$
$\Rightarrow x+y=8$.
$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$
Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$
Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$
Tìm hai số tự nhiên a và b với a nhỏ hơn b biết ƯCLN ( a ; b ) = 6 và BCNN ( a ; b ) = 60
Tích a.b là:60.6=360
Ta có:a=6m
b=6n
(m,n thuộc N và UCLN(m,n)=1)
Ta có:a.b=360
hay 6m.6n=360
36(m.n)=360
m.n=360 :36
m.n=10
Vì a<b nên m<n
m 1 2
n 10 5
=>a 6 12
b 60 30
Vậy ta có các cặp số (a,b) thỏa mãn thuộc{(6;60);(12;30)}
Tick mình là người giải đầu tiên nhé bạn!Tick cho mình lên 160 nha!
ta thấy 60 chia hết cho 6 mà a<b
-> a=6;b=60
vậy a=6;b=60
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
UKM
^6^7g^7*(KHV C GTGFCCGttedx
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) ƯCLN của hai số là 45 . số lớn là 270 . tìm số ngỏ
b) ƯCLN của hai số tự nhiên bằng 4 số nhỏ bằng 8 . tìm số lớn
a) goi hai so la a ; b va a >b
vi UCLN(a,b)=18=>a=18k ; b=18q (trong do UCLN (k,q)=1 va k>q)
=>a+b=162
18k+18q =162
18(k+q)=162
k+q=9
ta co bang sau | |||||||||||||||||||||||
vay ........... | |||||||||||||||||||||||
21453
52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 | 542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000 |