cho x,y,z>0
tính \(\frac{x}{y}\) biết \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1
Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z
do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 tích đúng nha
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
cộng 1 vào đẳng thức trên
=> x=y=z=t
=> M = 4 hoặc m=-1
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Cho x+y+z=7. Biết \frac{x}{y+z} +\frac{y}{x+z} +\frac{z}{x+y} = 3. Tính \frac{x^{2}}{y+z} +\frac{y^{2}}{x+z} +\frac{z^{2}}{x+y}
Cho x, y, z > 0. Biết rằng \(\frac{x+2y-z}{z}=\frac{y+2z-x}{x}=\frac{z+2x-y}{y}\). Tính \(C=\left(2+\frac{x}{y}\right)\left(2+\frac{y}{z}\right)\left(2+\frac{z}{x}\right)\)
dùng tính chất của dãy tỉ số bằng nhau
Cho \(x+y+z\ne0,\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Tính \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Cho biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính: \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
biết x ;y;z khác 0 và x+y+z=0 chứng minh
\(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)=9
Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)
Ta có:
\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)
\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\) (1)
Tương tự ta cũng có:
\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\) (2)
\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\) (3)
Từ (1);(2);(3) suy ra
\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)
Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Nên:
\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)
=>đpcm
Cho x+y+z+t=0 và
\(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{y+x+t}{z}=\frac{y++z+x}{t}\)
Tính B=\(\frac{2x}{y+z+t}-\frac{3y}{x+z+t}+\frac{4z}{x+y+z}-\frac{5t}{x+y+t}\)
\(B=\frac{2x}{y+z+t}-\frac{3y}{x+z+t}+\frac{4z}{x+y+t}-\frac{5t}{x+y+z}\)
\(B=\frac{2x}{-x}-\frac{3y}{-y}+\frac{4z}{-z}-\frac{5t}{-t}\)
\(B=-2+3-4+5=2\)
\(B=\frac{2x}{x+y+z+t-x}-\frac{3y}{x+y+z+t-y}+\frac{4z}{y+z+t+x-z}-\frac{5t}{x+y+z+t-t}\)
Thay x+y+z+t =0.Ta có
\(B=\frac{2x}{-x}-\frac{3y}{-y}+\frac{4z}{-z}-\frac{5t}{-t}=-2+3-4+5\)
B=2
biết x khác 0 , y khác 0 , z khác 0 và x+y+z=0
CMR : \(\left(\frac{x-y}{z}+\frac{y-z}{x}-\frac{z-x}{y}\right)\)\(\left(\frac{z}{x-y}-\frac{x}{y-z}+\frac{y}{z-x}\right)\)= 9