Những câu hỏi liên quan
KT
Xem chi tiết
H24
16 tháng 12 2019 lúc 21:33

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\\ \Rightarrow2\cdot\frac{1}{c}=\frac{a}{ab}+\frac{b}{ab}\\ \frac{2}{c}=\frac{a+b}{ab}\\ \Rightarrow2ab=c\left(a+b\right)\\ ab+ab=ca+cb\\ ab-cb=ca-ab\\ b\left(a-c\right)=a\left(c-b\right)\\ \Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
16 tháng 12 2019 lúc 21:42

\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
NN
Xem chi tiết
PQ
Xem chi tiết
TN
1 tháng 7 2017 lúc 10:33

Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)

\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)

\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)

Xảy ra khi \(a=b=c\)

c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)

Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)

Cộng theo vế 3 đăng thức trên ta có:

\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)

2 bài cuối full quy đồng mệt thật :v

Bình luận (0)
TN
Xem chi tiết
ML
9 tháng 8 2016 lúc 17:39

a

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.

b

\(a^2+b^2\ge2ab\)

\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)

Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.

Bình luận (0)
H24
9 tháng 8 2016 lúc 16:07

mình chỉ làm đc câu a thôi nhưng dài lắm

bài đó áp dụng bất đẳng thức cô si

Bình luận (0)
VT
23 tháng 2 2017 lúc 10:49

 bài dài quá bạn ạ 

Bình luận (0)
H24
Xem chi tiết
NL
6 tháng 5 2021 lúc 17:18

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Bình luận (0)
NL
6 tháng 5 2021 lúc 17:20

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
31 tháng 3 2019 lúc 9:36

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

Bình luận (0)
H24
31 tháng 3 2019 lúc 9:42

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

Bình luận (0)
H24
31 tháng 3 2019 lúc 9:44

3/Theo BĐT AM-GM,ta có: \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{ab}{a+b}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}=\frac{a+b}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

Bình luận (0)
VL
Xem chi tiết