Những câu hỏi liên quan
TL
Xem chi tiết
NL
5 tháng 9 2020 lúc 19:28

1.

Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?

2.

\(sin3x-4sinx.cos2x=0\)

\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)

\(\Leftrightarrow2sinx-sin3x=0\)

\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)

\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)

\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 19:33

3.

\(sin^2x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

4.

\(\sqrt{3}sin2x+1-cos2x=3\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 19:37

5.

Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)

6.

\(sinx+cosx-2sinx.cosx+1=0\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

Pt trở thành:

\(t+1-t^2+1=0\)

\(\Leftrightarrow-t^2+t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
KR
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
ND
Xem chi tiết
LP
22 tháng 4 2023 lúc 18:06

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

Bình luận (0)
LT
22 tháng 4 2023 lúc 16:33

Không=))

Bình luận (0)
SN
Xem chi tiết
AN
Xem chi tiết
NT
31 tháng 5 2016 lúc 16:44

a/ \(\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}=35-2x\)

     \(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x\left(x+7\right)}=35-2x\)

     Đặt \(a=\sqrt{x}\)\(b=\sqrt{x+7}\)    \(\left(a,b\ge0\right)\), ta được:

    \(a+b+2ab+2a^2=35\) \(\Leftrightarrow a+2a^2+b+2ab=35\)

   \(\Leftrightarrow a\left(1+2a\right)+b\left(1+2a\right)=35\)\(\Leftrightarrow\left(1+2a\right)\left(a+b\right)=35\)

     Đến đây bạn chia trường hợp để giải nha

b/ \(P=\frac{1+2x}{1-\sqrt{1+2x}}-\frac{1-2x}{1-\sqrt{1-2x}}\)\(=\frac{\left(1+2x\right)\left(1+\sqrt{1+2x}\right)}{-2x}-\frac{\left(1-2x\right)\left(1+\sqrt{1-2x}\right)}{2x}\)

            Tới đây bạn tự làm được k

             

Bình luận (0)
LM
7 tháng 3 2018 lúc 18:51

Câu a ra đến (1+2a)(a+b)=35 rồi giải thế nào vậy bạn. Mình cảm ơn

Bình luận (0)
NH
Xem chi tiết
NL
20 tháng 1 2024 lúc 22:00

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)

\(\Leftrightarrow2\sqrt{2x-5}=10\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow2x-5=25\)

\(\Leftrightarrow x=15\)

Bình luận (0)
NM
Xem chi tiết
ND
19 tháng 9 2016 lúc 22:44

em ko biết làm

hi hi

Bình luận (0)
HN
20 tháng 9 2016 lúc 12:33

ĐKXĐ: \(\sqrt{2}\le x\le\sqrt{2}\)

Ta có : \(2x^2-x+\sqrt{2-x^2}=\frac{7}{2}+\sqrt{2-x}\)

\(\Leftrightarrow4x^2-2x+2\sqrt{2-x^2}=7+2\sqrt{2-x}\)

\(\Leftrightarrow-4\left(2-x^2\right)+2\left(2-x\right)+2\sqrt{2-x^2}-2\sqrt{2-x}-3=0\)

Đặt \(a=\sqrt{2-x^2}\) , \(b=\sqrt{2-x}\) , pt trở thành : 

\(-4a^2+2b^2+2a-2b-3=0\)

Tới đây bạn lập ĐENTA rồi tìm mối liên hệ giữa a và b, từ đó suy được pt mới ẩn x.

Vì được dùng máy tính nên bạn tự tìm nghiệm nhé :)

Bình luận (0)
H24
20 tháng 9 2016 lúc 19:39

x+y=0

=>P=1

Bình luận (0)
TQ
Xem chi tiết
TD
2 tháng 6 2021 lúc 8:10

em                                                                                                                                                                                                            ko

biết

Bình luận (0)
 Khách vãng lai đã xóa
DY
Xem chi tiết
NL
1 tháng 3 2022 lúc 22:55

ĐKXĐ: \(x>0\)

\(3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(x+\dfrac{1}{4x}+1\right)-9\)

\(\Leftrightarrow3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-9\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a>0\)

\(\Rightarrow3a< 2a^2-9\Rightarrow2a^2-3a-9>0\)

\(\Rightarrow\left(a-3\right)\left(2a+3\right)>0\)

\(\Rightarrow a-3>0\Rightarrow a>3\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}>3\Leftrightarrow2x+1>6\sqrt{x}\)

\(\Leftrightarrow2x-6\sqrt{x}+1>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{3+\sqrt{7}}{2}\\0\le\sqrt{x}< \dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>\dfrac{8+3\sqrt{7}}{2}\\0\le x< \dfrac{8-3\sqrt{7}}{2}\end{matrix}\right.\)

Bình luận (0)