Tìm GTNN của \(A=\frac{x^2-2x+2013}{x^2}\)với x>0
Tìm GTLN hoặc GTNN : x^2-2x+2013 / x^2 với x hác 0
đặt A=\(\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2013}{x^2}\)\(=\)\(1-2\frac{1}{x}+2013\frac{1}{x^2}\)
đặt \(\frac{1}{x}=a\)\(=>\)\(\frac{1}{x^2}=a^2\)
khi đó \(A=2013a^2-2a+1\)
\(=>\)\(2013A=\left(2013a\right)^2-4026a+2013\)
\(=\left(2013a-1\right)^2+2012\)
bạn tự giải tiếp nhé :))
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTNN của A=|2x-2|+|2x-2013| với x là số nguyên
Tìm GTNN của A=|2x-2|+|2x-2013| với x là số nguyên
A=|2x-2|+|2x-2013| có giá trị nhỏ nhất => 2x-2= 0 hoặc 2x-2013=0
Mà x là 1 số nguyên => 2x-2= 0 => x=1
A=|2x-2|+|2x-2013|
=|2x-2|+|2013-2x|\(\ge\)|2x-2+2013-2x|=2011
Dấu "=" xãy ra khi:
(2x-2)(2013-2x)\(\ge\)0
TH1: 2x-1\(\ge\)0 và 2013-2x\(\ge\)0
x\(\ge\)1/2 và x\(\ge\)2013/2
=>x\(\ge\)2013/2
TH2: 2x-1\(\le\)0 và 2013-2x\(\le\)0
x\(\le\)1/2 và x\(\le\)2013/2
=>x\(\le\)1/2
từ 2 TH suy ra không có giá trị nào của x thỏa mãn A nhỏ nhất
tìm GTNN của biểu thức A=|2x-2|+|2x-2013| với x là số nguyên
\(A=|2x-2|+|2x-2013|\)
\(=|2x-2|+|2013-2x|\ge|2x-2+2013-2x|\)
\(\Rightarrow A\ge2011\)
Dấu "="xảy ra \(\Leftrightarrow\left(2x-2\right)\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-2< 0\\2013-2x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>\frac{2013}{2}\end{cases}}\)( loại )
\(\Leftrightarrow1\le x\le\frac{2013}{2}\)mà \(x\in Z\)
\(\Rightarrow x\in\left\{1;2;...;1006\right\}\)
Vậy \(A_{min}=2011\)\(\Leftrightarrow x\in\left\{1;2;...;1006\right\}\)
giúp mình với các bạn ơi
mình sắp phải nộp rồi
Tìm GTNN của biểu thức A = |2x-2| + | 2x-2013| với x là số nguyên
A = | 2x - 2 | + | 2x - 2013 |
= | 2x - 2 | + | 2013 - 2x |
≥ | 2x - 2 + 2013 - 2x | = | 2011 | = 2011
Đẳng thức xảy ra <=> ( 2x - 2 )( 2013 - 2x ) ≥ 0 => 1 ≤ x ≤ 2013/2
Vậy ...
tìm GTNN của A
A = / 2x -2/+/2x-2013/với x là số nguyên
\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) , ta có:
\(A\ge\left|2x-2+2013-2x\right|=2011\)
Vậy GTNN của A là 2011 khi \(\begin{cases}2x-2\ge0\\2013-2x\ge0\end{cases}\)\(\Leftrightarrow1\le x\le\frac{2013}{2}\)
trả lời giúp mình với hôm nay mình thi rồi
Tìm GTNN của biểu thức A=\(\frac{x^2-2x+2017}{2017x^2}\)với x khác 0
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......