Tìm GTLN, GTNN của biểu thức \(A=\frac{4x+3}{x^2+1}\)
Tìm GTNN và GTLN của biểu thức \(A=\frac{4x+3}{x^2+1}\)
Ta có :
\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2
\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2
đặt \(A=\frac{4x+3}{x^2+1}=a\)
<=>ax2+a=4x+3
<=>ax2-4x+a-3=0
\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)
\(\Leftrightarrow4a^2-12a-16\le0\)
\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)
\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)
Vậy Min A=-1;Max A=4
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Tìm GTLN, GTNN của biểu thức \(M=\frac{4x+1}{x^2+3}\).
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
Tìm GTLN và GTNN của biểu thức sau \(A=\frac{4x+3}{x^2+1}\)
Mình mới lớp 6
nên ko giải được bài này
Bài 1: Tìm GTNN của biểu thức: căn x(căn x-2)/ 1+ căn x
Bài 2: Tìm GTLN của biểu thức: căn x+3/4x
a) Tìm GTLN của biểu thức : \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức : \(\sqrt{x^2-4x+3}\).
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
Tìm GTNN, GTLN của biểu thức sau:
A=\(\dfrac{4x+3}{x^2+1}\)
\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)
Coi đây là PT bậc 2 ẩn x thì PT có nghiệm
\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)
Vậy \(A_{max}=4;A_{min}=-1\)
\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)