chứng minh rằng với mọi số dương a thì a^3 + 2 lớn hơn hoặc bằng 3a
Chứng minh rằng với mọi số thực dương a,b ta có :a^2/b+b^2/a lớn hơn hoặc bằng a+b.
Giúp mình với .
a^2/b+b^2/a>=a+b
=>a^3+b^3>=ab(a+b)
=>a^3+b^3-a^2b-ab^2>=0
=>a^2(a-b)+b^2(b-a)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
cho f(x) = x^2 +ax+b. chứng minh rằng với mọi số a,b thì trong 3 số |f(0)|, |f(1)|,|f(-1) có ít nhất một số lớn hơn hoặc bằng 1/2
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
Chứng minh rằng :
a) Tổng của một số phân số dương với số nghịch đảo của nó thì lớn hơn hoặc bằng 2
b) Áp dụng để chứng tỏ rằng nếu x , y là các số nguyên cùng dương hoặc cùng âm thì \(p=\frac{3x}{y}+\frac{3y}{x}\ge6\)
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)
chứng minh rằng với mọi a,b thuộc Z thì |a|+|b| luôn lớn hơn hoặc bằng |a+b|
Với mọi số thực a, b. Chứng minh rằng: |a| + |b| lớn hơn hoặc bằng |a + b|
Điều cần chứng minh:
|a|+|b|≥|a+b||a|+|b|≥|a+b|
|a+b|=|a+b||a+b|=|a+b|
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0
|a|>=0. và |b|>=0
Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0
⇒|a|+|b|≥|a+b|→đpcm
cho f(x)=x2 +ax+b. chứng minh rằng với mọi giá trị của a,b thì trong 3 số | f(0) |, | f(x) | , | f(-1)| có ít nhất 1 số lớn hơn hoặc bằng 1/2
Tl
Bạn T i k 3 lần cho mình mình trả lời cho
#Kirito