Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x)= x2+1
Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x) = x2+1
Tìm đa thức bậc nhỏ hơn 4 thỏa mãn hệ sau với 4 giá trị phân biệt của x
3f(x) - f(1-x) = x2+1
Tìm tất cả các đa thức P(x) bậc nhỏ hơn 4 và thoả mãn hệ thức sau ít nhất 4 giá trị phân biệt của x : x.P(x – 1) = (x – 2).P(x)
\(x.P\left(x-1\right)=\left(x-2\right).P\left(x\right)\) (1)
Thay \(x=0\) vào (1) \(\Rightarrow0.P\left(-1\right)=-2.P\left(0\right)\Rightarrow P\left(0\right)=0\)
\(\Rightarrow x=0\) là 1 nghiệm của đa thức
Thay \(x=2\) vào (1):
\(2.P\left(1\right)=0.P\left(2\right)\Rightarrow P\left(1\right)=0\)
\(\Rightarrow x=1\) là 1 nghiệm của đa thức
\(\Rightarrow\) \(P\left(x\right)\) có ít nhất 2 nghiệm \(x=0;x-1\)
Mà bậc P(x) nhỏ hơn 4 nên P(x) tối đa có bậc 3
\(\Rightarrow P\left(x\right)=k.x.\left(x-1\right).\left(ax+b\right)\) với \(k\ne0\)
Thay vào (1)
\(\Rightarrow x.k\left(x-1\right)\left(x-2\right)\left(ax-a+b\right)=kx\left(x-1\right)\left(x-2\right)\left(ax+b\right)\)
\(\Rightarrow kx\left(x-1\right)\left(x-2\right)\left(ax-a+b-ax-b\right)=0\)
\(\Rightarrow kx\left(x-1\right)\left(x-2\right).\left(-a\right)=0\)
\(\Rightarrow a=0\)
\(\Rightarrow P\left(x\right)=a.x.\left(x-1\right)\) với a là số thực khác 0 bất kì
Tìm đa thức f(x) có bậc nhỏ hơn 4 và thảo mãn 3f(x)- f(i-x)= x^2+1
cho đa thức p(x) có bậc 4 hệ số cao nhất là 1 thỏa mãn f(1)=-5, f(3)=-15, f(-2)=65 tính 3f(-3)+f(4)
Cho đa thức f(x) bậc 4 , hệ số của bậc cao nhất là 1 và thỏa mãn :f(1)=3 ; f(3) =11 ; f(5)=27 . Tính giá trị A= f(-2) + 7f(6) = ?
cho đa thức f(x) bậc 4 , hệ số của bậc cao nhất là 1 và thỏa mãn : f(1) =3 ; f(3) =11 ; f(5)=27
Tính giá trị A= f(-2)+7 f(6) = ?
thử vào câu hỏi tương tự coi nhìn vào mà làm
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Có :
\(3.f\left(2\right)+2.f\left(1-2\right)=2.2+9\)
\(\Rightarrow3.f\left(2\right)+2.f\left(-1\right)=13\)
\(3.f\left(-1\right)+2.f\left(2\right)=2.\left(-1\right)+9\)
\(\Rightarrow3.f\left(-1\right)+2.f\left(2\right)=7\)
\(\Rightarrow\left[3.f\left(2\right)+2.f\left(-1\right)\right]-\left[3.f\left(-1\right)+2.f\left(2\right)\right]=13-7\)
\(\Rightarrow f\left(2\right)-f\left(-1\right)=6\)
\(\Rightarrow f\left(-1\right)=f\left(2\right)-6\)
Thay \(f\left(-1\right)=f\left(2\right)-6\)vào \(3.f\left(2\right)+2.f\left(-1\right)=13\)có:
\(3.f\left(2\right)+2.\left[f\left(2\right)-6\right]=13\)
\(3.f\left(2\right)+2.f\left(2\right)-12=13\)
\(5.f\left(2\right)=25\)
\(f\left(2\right)=\frac{25}{5}=5\)
Vậy ...
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Mình mới học lớp 6
Nên không biết nha
Chúc các bạn học giỏi
Ta có f(2)= 3f(2)+2f(-1)=2.2+9=13
f(-1)=3f(-1)+2f(2)=2.(-1)+9=7
=>f(-1)+f(2)=3f(2)+2f(-1)+3f(_1)+2f(2)=20
=:>5[f(2)+f(-1)]=20
=>f(2)+f(-1)=4
=>3f(2)+2f(_1)-3f(-1)-2f(2)=6
=>f(2)-f(-1)=6
=>f(2)+f(1)+f(2)+f(-1)=26
=>2f(2)=26
=>f(2)=13