cho\(b^2=ac\)chung minh rang\(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Cho\(\frac{a}{c}=\frac{c}{b}\)Chung minh rang \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Từ giả thiết ta suy ra ab=c2
Thay số vào ta có : \(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
=> đcpcm
__cho_mình_nha_chúc_bạn_học _giỏi__
Cho a,b,c>0.Chung minh rang \(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\)
Ta có:
\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)
\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)
\(=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)
cho a+b+c=2009 chung minh rang \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
cho \(\frac{a}{c}=\frac{c}{b}\).Chung minh rang: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) va\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2.\)
Chung minh rang a+b+c=abc
Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
\(\Rightarrowđpcm\)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)
\(\Leftrightarrow a+b+c=abc\)
\(\RightarrowĐPCM\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=> \(\frac{a+b+c}{abc}=1\)
=> a+b+c=abc
cho 1/a+1/b+1/c=2 va :a+b+c=abc .chung minh rang: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cho 1/a+1/b+1/c=2 va :a+b+c=abc
.chung minh rang:
.
cho \(\frac{a}{c}=\frac{c}{b}\) chung minh rang \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\)
\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
Cho các số thực dương a,b,c,d. Chung minh rang \(\frac{b}{\left(a+\sqrt{b}\right)^2}+\frac{a}{\left(b+\sqrt{a}\right)^2}\ge\frac{\sqrt{bd}}{ac+\sqrt{bd}}\)
Giup mk voi cac ban