Những câu hỏi liên quan
DL
Xem chi tiết
H24
24 tháng 6 2021 lúc 7:27

Tá có : $(x+1).(y+1).(z+1) = (x-1).(y-1).(z-1)$

$\to xyz+1+x+y+z+xy+yz+zx =xyz + x + y + z -xy-yz-zx-1$

$\to 2.(xy+yz+zx) = -2$

$\to xy+yz+zx=-1$

Bình luận (0)
DL
Xem chi tiết
LK
26 tháng 3 2019 lúc 23:10

Có: \(x+y+z=0\)

CM được: \(x^3+y^3+z^3=3xyz\)

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)

\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)

Có: \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)

Từ (1) và (2):

Có: \(x^6+y^6+z^6=3x^2y^2z^2\)

Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)

Bình luận (0)
DH
1 tháng 7 2020 lúc 12:39

bằng gì kệ màylởp 3 đó híhí

Bình luận (0)
 Khách vãng lai đã xóa
TL
1 tháng 7 2020 lúc 19:52

Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

khi đó chứng minh được: \(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)mà x+y+z=0

\(\Rightarrow x^3+y^3+z^3=3xyz\)từ đó

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}=\frac{\left(3xyz\right)^2-2\cdot3\cdot x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}=xyz\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
NL
27 tháng 12 2020 lúc 8:17

Cấu hỏi đâu mà trả lờihum

Bình luận (0)
NL
27 tháng 12 2020 lúc 10:56

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)

Bình luận (0)
NS
Xem chi tiết
HP
31 tháng 1 2017 lúc 21:20

áp dụng : nếu x+y+z=0 thì x3+y3+z3=3xyz (có thể tự c/m)

trong bài thì x+y+z+3=0  hay (x+1)+(y+1)+(z+1)=0 

Bình luận (0)
HT
Xem chi tiết
PK
Xem chi tiết
TN
7 tháng 6 2017 lúc 23:21

Sửa đề: Sửa x+y thành x-y đi nhé ở giả thiết âý

Lời giải+làm rõ cái gợi ý

Ta có mệnh đề \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\), áo dụng cái này với \(a=\left(y-z\right)\sqrt[3]{1-x^3};b=\left(z-x\right)\sqrt[3]{1-y^3};c=\left(x-y\right)\sqrt{1-z^3}\) ta được: 

\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+....=...\) (như trên)

Suy ra \(\left(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3\right)-\left(\left(xy-xz\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(x+z\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\left(1\right)\)

Ta lại có:\(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(2\right)\)

Và \(\left(xy-zx\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3=3xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(3\right)\)

Thay (2),(3) vào (1) ta có:

\(3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-xyz\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

Vì x,y,z đôi một khác nhau nên 

\(\left(1-xyz\right)=\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

\(\Leftrightarrow\left(1-xyz\right)^3=\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

P.s:mệt quá rồi, vừa làm vừa ngáp có gì mai thanh toán

Bình luận (0)
NL
7 tháng 6 2017 lúc 20:45

Bạn lập phương 2 vế của phương trình =0 đó rồi nhân tung ra (vất vả) rồi kết hợp với gợi ý của thầy cậu là ok

Bình luận (0)
PK
7 tháng 6 2017 lúc 21:11

còn cách nào khác không bạn ?

Bình luận (0)
CB
Xem chi tiết
LH
18 tháng 1 2016 lúc 9:11

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

Bình luận (0)
TK
18 tháng 1 2016 lúc 8:28

em mới học lớp 6 nha

sory

Bình luận (0)
BN
18 tháng 1 2016 lúc 8:56

tic cho mình hết âm nhé

Bình luận (0)
CM
Xem chi tiết
CM
Xem chi tiết