Những câu hỏi liên quan
H24
Xem chi tiết
TV
Xem chi tiết
TH
30 tháng 12 2022 lúc 20:46

Làm cách kia cx đc, nhưng làm vậy ko thông minh lắm.

\(Đk:x\ge-2\)

\(3\sqrt{x^3+8}=2x^2-3x+10\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\)

Ta đặt \(\left\{{}\begin{matrix}u=\sqrt{x+2}\left(u\ge0\right)\\v=\sqrt{x^2-2x+4}\left(v\ge2\sqrt{3}\right)\end{matrix}\right.\)

Khi đó phương trình trở thành:

\(3uv=2v^2+u^2\)

\(\Leftrightarrow2v^2-3uv+u^2=0\)

\(\Leftrightarrow2v^2-2uv-uv+u^2=0\)

\(\Leftrightarrow2v\left(v-u\right)-u\left(v-u\right)=0\)

\(\Leftrightarrow\left(v-u\right)\left(2v-u\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}v=u\\2v=u\end{matrix}\right.\)

Với \(v=u\Rightarrow\sqrt{x^2-2x+4}=\sqrt{x+2}\)

\(\Rightarrow x^2-2x+4=x+2\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Với \(2v=u\Rightarrow2\sqrt{x^2-2x+4}=\sqrt{x+2}\)

\(\Rightarrow4\left(x^2-2x+4\right)=x+2\)

\(\Leftrightarrow4x^2-8x+16=x+2\)

\(\Leftrightarrow4x^2-9x+14=0\)

\(\Delta=\left(-9\right)^2-4.4.14=-143< 0\)

\(\Rightarrow\)Phương trình vô nghiệm.

Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;2\right\}\)

 

Bình luận (0)
H24
30 tháng 12 2022 lúc 21:08

\(3\sqrt{x^3+8}=2x^2-3x+10\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\left(1\right)\)

\(\Leftrightarrow9\left(x+2\right)\left(x^2-2x+4\right)=\left(2x^2-3x+10\right)^2\)

\(\Leftrightarrow9\left(x^3-2x^2+4x+2x^2-4x+8\right)=4x^4-6x^3+9x^2-30x+20x^2-30x+100\)

\(\Leftrightarrow9x^3-18x^2+36x+18x^2-36x+72-4x^4+6x^3-20x^2+6x^3-9x^2+30x-20x^2+30x-100=0\)

\(\Leftrightarrow-4x^4+21x^3-49x^2+60x-28=0\left(2\right)\)

Nhận thấy, \(x=1\) và \(x=2\) là nghiệm của phương trình \(\left(2\right)\)

\(\left(2\right)\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(-4x^2+9x-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\-4x^2+9x-14=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\\left(x-\dfrac{9}{8}\right)^2=-\dfrac{143}{16}\left(\text{vô lí}\right)\end{matrix}\right.\)

Thử lại nghiệm \(x=1;x=2\) vào phương trình \(\left(1\right)\) thấy nghiệm \(x=2\) thỏa mãn.

Bình luận (2)
TT
Xem chi tiết
AM
8 tháng 12 2015 lúc 22:42

mik mới học lớp 8 thôi sorry nha

Bình luận (0)
QD
Xem chi tiết
NN
Xem chi tiết
TH
12 tháng 9 2015 lúc 21:27

Đây là phương pháp trừ để hỏng, phương pháp rất đơn giản như sau:

B1: Thử các gt đầu 1;-1;2;-2;3;-3;...... xác định giá trị VT,VP khi ở nghiệm x

B2:GPT

Bài làm 

Thử vào PT ta thấy x=1 là nghiêm pt và VT=VP=4

có đẳng thức sau: \(\sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

Trừ cả hai vế PT cho 4 ta có: \(\left(\sqrt{x^2+8}\right)+3x-2-4=\left(\sqrt{x^2+15}\right)-4\)

\(\left(\sqrt{x^2+8}\right)-\sqrt{9}+\left(3x-3\right)=\left(\sqrt{x^2+15}\right)-\sqrt{16}\)

\(\frac{\left(x^2+8-9\right)}{\sqrt{x^2+8}+3}+3\left(x-1\right)=\frac{x^2+15-16}{\left(\sqrt{x^2+15}\right)+4}\)

\(\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}+3\left(x-1\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(\sqrt{x^2+15}\right)+4}\)

\(\left(x-1\right)\left(\frac{\left(x+1\right)}{\sqrt{x^2+8}+3}+3-\frac{\left(x+1\right)}{\left(\sqrt{x^2+15}\right)+4}\right)=0\)

Giải tiếp ta có x=1 hoặc cái trong ngoặc kia sẽ có nghiêm hoặc vô nghiêm gì đó

 

 

 

 

Bình luận (0)
VN
Xem chi tiết
PH
15 tháng 11 2019 lúc 22:48
https://i.imgur.com/HEBnZ8f.jpg
Bình luận (0)
 Khách vãng lai đã xóa
PH
15 tháng 11 2019 lúc 22:49
https://i.imgur.com/4JUKzvG.jpg
Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
PL
13 tháng 8 2019 lúc 20:48

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)

\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)

\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)

\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)

\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)

Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)

\(\Rightarrow x+1=1\Rightarrow x=0\)

Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)

\(\Rightarrow x+2=1\Rightarrow x=-1\)

Vậy \(x\in\left\{0;-1\right\}\)

Bình luận (0)
TN
Xem chi tiết
TL
31 tháng 8 2016 lúc 20:46

ko biết

Bình luận (0)
NA
31 tháng 8 2016 lúc 21:04

Bài quá dễ tự làm đi 

k mình mình giải cho

Bình luận (0)
TM
31 tháng 8 2016 lúc 21:14

Bạn nói dễ mà bạn không chịu làm thì bạn nói làm gì ???

Bình luận (0)
TA
Xem chi tiết
FM
18 tháng 10 2018 lúc 15:18

b) ĐKXĐ:    \(x\ne1\)

Ta có:

\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)

Đặt \(\frac{x^2}{x-1}=a\)

Khi đó pt đã cho trở thành:

\(a^3-3a^2+3a-2=0\)

\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)

Theo cách đặt:   \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)

Bình luận (0)
FM
18 tháng 10 2018 lúc 15:30

a) ĐKXĐ:   \(x\ge8\)

Ta có:

\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)

\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)

+)  \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)

+)  \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)

\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)

Vaayh pt có 1 nghiệm là x=9

Bình luận (0)