Những câu hỏi liên quan
NT
Xem chi tiết
BM
Xem chi tiết
TN
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
NL
21 tháng 2 2021 lúc 20:47

Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)

\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)

\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)

\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)

\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)

Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)

Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn

=> x+y+z lẻ  mà 1 số lẻ không chia hết cho 6 nên điều g/s sai

=> tồn tại ít nất 1 trong 3 số x,y,z chẵn

Giả sử: x chẵn

=> x chia hết cho 2 => 3xyz chia hết cho 6

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NT
12 tháng 1 2023 lúc 22:01

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

Bình luận (0)
TT
Xem chi tiết
NN
Xem chi tiết
NT
30 tháng 1 2021 lúc 10:17

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

Bình luận (1)