Tìm GTLN của
A = \(\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
B = \(\frac{7}{x^2+2x+4}\)
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
tìm GTLN của biểu thức:M=\(\left(\frac{2x+3\sqrt{x}}{2x+5\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right):\frac{\sqrt{x}+2}{\sqrt{x}+2018}\)với x lớn hơn hoặc bàng 0
\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)
\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)
...
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Cu Hùng lên mà lấy bài này
1 Cho Biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gon A
b,tìm GTNN của A
Tìm x để \(B=\frac{2\sqrt{x}}{A}\) là số nguyên
2 giải pt
a,\(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
b,\(\left(x-5\right)^{2010}+\left(x-6\right)^{2010}=1\)
3 Cho các số o âm x,y,z thõa mãn \(x+y+z\le3\) . Tìm GTLn \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(x+y+z\right)\)
4 giải pt nghiệm nguyên
\(4x^2-8y^3+2z^2+4x-4=0\)
5 tín số nguyên a,b t/m \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
6giải pt \(\sqrt{x^2+1-2x}+\sqrt{x^2-4x+4}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
7 Tìm GTNN , GTLN \(M=2x+\sqrt{5-x^2}\)
8 cho\(x,y,z\in(0,1]\)
CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\frac{a^2+a+1}{\left(a+1\right)}\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=\frac{2013^2}{2013}=2013\)
\(\Rightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=|x-1|+|x-2|=2013\)
giải tiếp nha
Tìm x để B=3A,biếtA=\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}+\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)\) /\(\left(\frac{1}{2\sqrt{5}+3\sqrt{2}}-\frac{1}{2\sqrt{5}-3\sqrt{2}}\right)\)
B=\(\frac{2x^4-x^3+2x^2+x-4}{2x^3-x^2-2x+1}\)
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x thuộc Z để Q thuộc Z
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
Tìm GTLN:
\(A=\frac{\sqrt{10x-49}}{2020}\\ B=\frac{\sqrt{2x^2-25}}{2020x^2}\\ C=\frac{7x^8+256}{x^7}\left(x>0\right)\\ D=\frac{\sqrt{x}+6\sqrt{x}+34}{\sqrt{x}+3}\\ E=x+\frac{1}{x-1}\left(x>1\right)\)