Những câu hỏi liên quan
NN
Xem chi tiết
AS
Xem chi tiết
NN
Xem chi tiết
NT
29 tháng 9 2016 lúc 13:41

Đăng từng bài thôi chứ bạn

Bình luận (1)
HP
29 tháng 9 2016 lúc 15:57

mk lm nha

 

Bình luận (1)
NA
18 tháng 1 2017 lúc 20:28

1.

a)Ta có: 3.x=y.7

3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau

suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)

7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau

suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)

(y khác 0 nên k khác 0)

vậy: x=2.k

y=5.k

(k thuộc tập hợp Z và k khác 0)

Bình luận (0)
NN
Xem chi tiết
TH
Xem chi tiết
H24
11 tháng 8 2016 lúc 13:47

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

Bình luận (0)
H24
11 tháng 8 2016 lúc 14:16

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

Bình luận (0)
KL
2 tháng 9 2018 lúc 14:34

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
DD
Xem chi tiết
S5
Xem chi tiết
TQ
Xem chi tiết
TT
Xem chi tiết
CT
15 tháng 7 2019 lúc 21:06

a) vì x/2=y/3=> x/8=y/12

         y/4=z/5=>y/12=z/15

từ hai cái trên nên x/8=y/12=z/15=> x^2/64=y^2/144=z^2/225 và x^2-y^2=-80

Áp dụng t/c dãy tỉ số bằng nhau ta được

x^2/64=y^2/144=z^2/225=x^2-y^2/64-144=-80/-80=1

+) x=8

+)y=12

+)z=15

cái dưới chỉ cần nhân hệ số vào và làm tương tự nhé e.

Bình luận (0)
HS
16 tháng 7 2019 lúc 16:22

\(a,\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-80\)

Ta có : \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}\)

Mà \(x^2-y^2=-80\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}=\frac{x^2-y^2}{64-144}=\frac{-80}{-80}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{64}=1\\\frac{y^2}{144}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm8\\y=\pm12\end{cases}}\)

Bình luận (0)
HS
16 tháng 7 2019 lúc 16:28

\(b,\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Leftrightarrow\left[\frac{x}{2}\right]^3=\left[\frac{y}{4}\right]^3=\left[\frac{z}{6}\right]^3\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{z^2}{36}=\frac{2x^2+2y^2-z^2}{8+32-36}=\frac{1}{4}\)

Vậy : \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)

Bình luận (0)