Mệnh đề sau đúng hay sai lập mệnh đề phủ định của mệnh đề đó:
∀n∈N* ;n2+n+1 là số nguyên tố
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó ∀ n ∈ Z: n ≤ n2
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ n ∈ N: n chia hết cho n
A: “∀ n ∈ N: n chia hết cho n”
A− : “∃ n ∈ N: n không chia hết cho n”.
A− đúng vì với n = 0 thì n không chia hết cho n.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Có một số thực bằng số đối của nó.
∃ x ∈ R : x = - x (đúng)
Phủ định ∀ x ∈ R : x ≠ - x (sai)
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\forall x\in R\), \(x^2-x+1>0\)
b) \(\exists n\in N\), (n +2) (n+1 ) = 0
c) \(\exists x\in Q\), \(x^2=3\)
d) \(\forall n\in N\), \(2^n\ge n+2\)
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
P: “5,15 là một số hữu tỉ”;
Q: “2 023 là số chẵn”.
+) Mệnh đề phủ định của mệnh đề P là \(\overline P \): “5,15 không phải là một số hữu tỉ”
Mệnh đề P đúng, \(\overline P \) sai vì \(5,15 = \frac{{103}}{{20}} \in \mathbb{Q}\), là một số hữu tỉ.
+) Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “2 023 không phải là số chẵn” (hoặc “2 023 là số lẻ”)
Mệnh đề Q sai, \(\overline Q \) đúng vì 2 023 có chữ số tận cùng là \(3 \ne \left\{ {0;2;4;6;8} \right\}\), đo đó 2 023 không phải là số chẵn.
P: đúng
phủ định: "5,15 không phải số hữu tỉ"
Q: sai
Phủ định: "1023 không phải số chẵn"
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
∀ x ∈ R : x + ( - x ) = 0 (đúng)
Phủ định là ∃ x ∈ R : x + ( - x ) ≠ 0 (sai)
Nêu mệnh đề phủ định của mệnh đề sau, cho biết mệnh đề này đúng hay sai?
K: “Phương trình x 4 − 2 x 2 + 2 = 0 có nghiệm”
A. K ¯ : “phương trình x 4 − 2 x 2 + 2 = 0 có nghiệm” mệnh đề này sai
B. K ¯ : “phương trình x 4 − 2 x 2 + 2 = 0 vô nghiệm” mệnh đề này sai
C. K ¯ : “phương trình x 4 − 2 x 2 + 2 = 0 vô nghiệm” mệnh đề này đúng
D. K ¯ : “phương trình x 4 − 2 x 2 + 2 = 0 có nghiệm” mệnh đề này đúng
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
∀ x ∈ R 0 : x . 1 / x = 1 (đúng)
Phủ định là ∃ x ∈ R 0 : x . 1 / x ≠ 1 (sai)
Xác định tính đúng sai của mệnh đề sau và tìm mệnh đề phủ định của nó:
Q:"∃nϵN,n chia hết cho n + 1"
Mệnh đề này đúng
Vì với n=0 thì 0 chia hết cho 0+1
Mệnh đề phủ định: \(\overline{Q}\forall n\in N;n⋮̸n+1\)